52m^2= 2[(x-5)+(x)]. 52m^2= 2(2x-5). 52m^2=4x-10
Answer:
y =2
Step-by-step explanation:
Substitute -10 for x:
2(-10)-9y = -38
-20-9y = -38
-9y = -18
9y = 18
y = 2
Answer:
<h2>
∠PZQ = 63°</h2>
Step-by-step explanation:
If point P is the interior of ∠OZQ , then the mathematical operation is true;
∠OZP + ∠PZQ = ∠OZQ
Given parameters
∠OZQ = 125°
∠OZP = 62°
Required
∠PZQ
TO get ∠PZQ, we will substitute the given parameters into the expression above as shown
∠OZP + ∠PZQ = ∠OZQ
62° + ∠PZQ = 125°
subtract 62° from both sides
62° + ∠PZQ - 62° = 125° - 62°
∠PZQ = 125° - 62°
∠PZQ = 63°
<em>Hence the value of ∠PZQ is 63°</em>
Answer:
0.0668 = 6.68% probability that an individual man’s step length is less than 1.9 feet.
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean
and standard deviation
, the z-score of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Normally distributed with a mean of 2.5 feet and a standard deviation of 0.4 feet.
This means that 
Find the probability that an individual man’s step length is less than 1.9 feet.
This is the p-value of Z when X = 1.9. So



has a p-value of 0.0668
0.0668 = 6.68% probability that an individual man’s step length is less than 1.9 feet.