Answer:
![(\, \cos(\frac{\pi}{16}) + i\sin(\frac{\pi}{16}) \,)^{1/2} = \cos(\frac{\pi}{32}) + i\sin(\frac{\pi}{32}) = 0.99 + i0.09](https://tex.z-dn.net/?f=%28%5C%2C%20%5Ccos%28%5Cfrac%7B%5Cpi%7D%7B16%7D%29%20%2B%20i%5Csin%28%5Cfrac%7B%5Cpi%7D%7B16%7D%29%20%5C%2C%29%5E%7B1%2F2%7D%20%20%3D%20%20%5Ccos%28%5Cfrac%7B%5Cpi%7D%7B32%7D%29%20%2B%20i%5Csin%28%5Cfrac%7B%5Cpi%7D%7B32%7D%29%20%20%3D%200.99%20%2B%20i0.09)
Step-by-step explanation:
The complex number given is
![z = (\, \cos(\frac{\pi}{16}) + i\sin(\frac{\pi}{16}) \,)^{1/2}](https://tex.z-dn.net/?f=z%20%3D%20%28%5C%2C%20%5Ccos%28%5Cfrac%7B%5Cpi%7D%7B16%7D%29%20%2B%20i%5Csin%28%5Cfrac%7B%5Cpi%7D%7B16%7D%29%20%5C%2C%29%5E%7B1%2F2%7D)
Now, remember that the DeMoivre's theorem states that
![( \cos(x) + i\sin(x) )^n = \cos(nx) + i\sin(nx)](https://tex.z-dn.net/?f=%28%20%5Ccos%28x%29%20%2B%20i%5Csin%28x%29%20%29%5En%20%20%3D%20%5Ccos%28nx%29%20%2B%20i%5Csin%28nx%29)
Then for this case we have that
![(\, \cos(\frac{\pi}{16}) + i\sin(\frac{\pi}{16}) \,)^{1/2} = \cos(\frac{\pi}{32}) + i\sin(\frac{\pi}{32}) = 0.99 + i0.09](https://tex.z-dn.net/?f=%28%5C%2C%20%5Ccos%28%5Cfrac%7B%5Cpi%7D%7B16%7D%29%20%2B%20i%5Csin%28%5Cfrac%7B%5Cpi%7D%7B16%7D%29%20%5C%2C%29%5E%7B1%2F2%7D%20%20%3D%20%20%5Ccos%28%5Cfrac%7B%5Cpi%7D%7B32%7D%29%20%2B%20i%5Csin%28%5Cfrac%7B%5Cpi%7D%7B32%7D%29%20%20%3D%200.99%20%2B%20i0.09)
Answer:
36 is the answer here
Step-by-step explanation:
Well when you subsitute the given values
x=5
and
y=4
2(5+3)+5*4
Now solve it normally like what you would do with orders of operation
10+6+20
Left to right
36
It would be: 20*12 = 240
So, he has 240 hens in total...
I think that it's - positive linear association with one deviation
X^-n = 1/x^n
Your fraction becomes:
1/ {(m^5 t^2)(27m^6t^3)} now combine the powers in the denominator
1/ (27 m^11 t^5)