If A and B are independent, then
.
a.



b. I'm guessing the ? is supposed to stand for intersection. We can use DeMorgan's law for complements here:



c. DeMorgan's law can be used here too:



<u>Question 8</u>
a^2 + 7a + 12
= (a+3)(a+4)
When factorising a quadratic, the product of the two factors should equal the constant term (12), and the sum of the two factors should equal the linear term (7). To find the two factors, list out the factors of 12 (1x12, 2x6, 3x4) and identify the pair that adds up to 7 (3+4).
An alternative method if you get stuck during your exam would be to solve it algebraically using the quadratic formula and then write it in the factorised form.
a = (-7 +or- sqrt(7^2 - 4(1)(12)) / 2(1)
= (-7 +or- sqrt(1))/2
= -3 or -4
These factors are the negative of the values that would go in the brackets when written in factorised form, as when a = -3 the factor (a+3) would equal 0. (If it were positive 3 instead, then in the factorised form it would be a-3).
<u>Question 10</u>
-3(x - y)/9 + (4x - 7y)/2 - (x + y)/18
Rewrite each fraction with a common denominator so you can combine the fractions into one.
= -6(x - y)/18 + 9(4x - 7y)/18 - (x + y)/18
= (-6(x - y) + 9(4x - 7y) - (x + y)) /18
Expand the brackets and collect like terms.
= (-6x + 6y + 36x - 63y - x - y)/18
= (29x - 58y)/18
= 29/18 x - 29/9 y
Answer:
245.04
Step-by-step explanation:
A=2πrh+2πr2=2·π·3·10+2·π·32≈245.04423
Divide 6 by 2 to find the radius
Answer: Should be 56 Stickers
Step-by-step explanation:
4*12 =48 + 8 = 56 but since I dont have the pictures dont really have proof that im right