Answer:
Therefore, x = -2m+4/-n-1
Answer:
The margin of error for this estimate is of 14.79 yards per game.
Step-by-step explanation:
We have the standard deviation for the sample, which means that the t-distribution is used to solve this question.
T interval
The first step to solve this problem is finding how many degrees of freedom, we have. This is the sample size subtracted by 1. So
df = 20 - 1 = 19
95% confidence interval
Now, we have to find a value of T, which is found looking at the t table, with 19 degrees of freedom(y-axis) and a confidence level of
. So we have T = 2.093
The margin of error is:

In which s is the standard deviation of the sample and n is the size of the sample.
You randomly select 20 games and see that the average yards per game is 273.7 with a standard deviation of 31.64 yards.
This means that 
What is the margin of error for this estimate?



The margin of error for this estimate is of 14.79 yards per game.
<h3>Answer: 6pi radians</h3>
(this is equivalent to 1080 degrees)
======================================
Explanation:
f(x) = sin(x/3)
is the same as
f(x) = 1*sin( (1/3)(x-0) )+0
and that is in the form
f(x) = A*sin( B(x-C) )+D
The letters A,B,C,D are explained below
A = helps find the amplitude
B = 2pi/T, where T is the period
C = determines phase shift (aka left/right shifting)
D = determines vertical shift = midline
All we care about is the value of B as that is the only thing that is connected to the period T
--------
Compare f(x) = 1*sin( (1/3)(x-0) )+0 with f(x) = A*sin( B(x-C) )+D and we see that B = 1/3, so,
B = 2pi/T
1/3 = 2pi/T
1*T = 3*2pi ... cross multiply
T = 6pi
The period is 6pi radians. This is equivalent to 1080 degrees. To convert from radians to degrees, you multiply by (180/pi).
For example: 26 million = 26,000,000 and 0.96 million = 960,000.
Answer:
26.96 million = 26,960,000
Thank you.
Answer:
0
Step-by-step explanation:
5(x+3) replace x with -3
5(-3+3)
5(0)
0