Answer:
3.2 g O₂
Explanation:
To find the mass of O₂, you need to (1) convert grams H₂O to moles H₂O (via molar mass), then (2) convert moles H₂O to moles O₂ (via mole-to-mole ratio from reaction coefficients), and then (3) convert moles O₂ to grams O₂ (via molar mass). It is important to arrange the ratios/conversions in a way that allows for the cancellation of units (the desired unit should be in the numerator). The final answer should have 2 sig figs to reflect the sig figs of the given value (3.6 g).
Molar Mass (H₂O): 2(1.008 g/mol) + 15.998 g/mol
Molar Mass (H₂O): 18.014 g/mol
2 H₂O -----> 2 H₂ + 1 O₂
Molar Mass (O₂): 2(15.998 g/mol)
Molar Mass (O₂): 31.996 g/mol
3.6 g H₂O 1 mole 1 mole O₂ 31.996 g
---------------- x --------------- x --------------------- x --------------- = 3.2 g O₂
18.014 g 2 moles H₂O 1 mole
The answer is B, as a solid and a low temperature would result in the lowest entropy value
In the presence of Hg (OAc)2, the alkenes reacts with alcohol to give allkoxy-mercurated product followed by reduction with NaBH4 to give ether. This reaction is known as alkoxymercuration-demercuration reaction.
Explanation:
No. Isotopes are atoms of the same element with different atomic masses (due to the different number of neutrons)
For example, carbon exists as carbon-12 and carbon-14, which both have 6 protons but have 6 and 8 neutrons respectively.