Answer:
the heat rate required to cool down the gas from 535°C until 215°C is -2.5 kW.
Explanation:
assuming ideal gas behaviour:
PV=nRT
therefore
P= 109 Kpa= 1.07575 atm
V= 67 m3/hr = 18.6111 L/s
T= 215 °C = 488 K
R = 0.082 atm L /mol K
n = PV/RT = 109 Kpa = 1.07575 atm * 18.611 L/s /(0.082 atm L/mol K * 488 K)
n= 0.5 mol/s
since the changes in kinetic and potencial energy are negligible, the heat required is equal to the enthalpy change of the gas:
Q= n* Δh = 0.5 mol/s * (- 5 kJ/mol) =2.5 kW
The answer is the Car Traveling North... According to me
Answer:

Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us to solve for the molarity of the KOH solution by knowing this base react in a 1:1 mole ratio with nitric acid, HNO3; thus, we can write the following equation, as their moles are the same at the endpoint:

Which in terms of molarities and volumes is:

Thus, we solve for the molarity of the base (KOH) to obtain:

Regards!
The answer is b but you want to think of why it is moving fast because of the temp indication