Answer:
Explanation:
According to the law of conservation of mass, mass can neither be created nor be destroyed. Thus the mass of products has to be equal to the mass of reactants. The number of atoms of each element has to be same on reactant and product side. Thus chemical equations are balanced.
The balanced chemical equation for reaction of potassium superoxide with carbon dioxide to produce oxygen and potassium carbonate will be:
Answer:
<h3>
<u>A). react with acid that is added and make a base.</u></h3>
explanation:
<em>Buffer solutions resist a change in pH when small amounts of a strong acid or a strong base are added.</em>
To answer this item, we assume that oxygen behaves ideally such that it is able to fulfill the following equation,
PV = nRT
If we are to retain constant the variable n and V.
The percent yield can therefore be solved through the following calculation,
n = (10.5 L)/(22.4 L) x 100%
Simplifying,
n = 46.875%
Answer: 48.87%
Answer:
A
Explanation:
There are three states of mater; solid liquid and gas. The sold state is the difficult to compress while the gaseous state is quite easy to compress.
A gas is easily compressed because the particles in a gas are far apart from each other. A solid is difficult to compress because the particles of a solid are close together. From all the above statements, it is easily deducible that the compressibility property of a substance in a particular state of matter depends on the proximity of the particles to each other, hence the answer above.
Answer:
Catalyst
Explanation:
A general term for a chemical which accelerates a reaction without becoming chemically involved is called a catalyst.
Catalysts are used in industrial processes to speed up the rate of a chemical reaction. For instance, in the Contact process used in the production of sulphuric (vi) acid, vanadium(V) oxide (V2O5) is used as a catalyst to speed up the production of the acid. Vanadium(V) oxide (V2O5) is preferred to Platinum which was initially used as the catalyst since it does not react with any of the products of the process