Answer:
<h3>The answer is 1.84 g/mL</h3>
Explanation:
The density of a substance can be found by using the formula

From the question we have

We have the final answer as
<h3>1.84 g/mL</h3>
Hope this helps you
Answer:
1. The oxidation half-reaction is: Mn(s) ⇄ Mn²⁺(aq) + 2e⁻
2. The reduction half-reaction is: Ag⁺(aq) + 1e⁻ ⇄ Ag(s)
Explanation:
Main reaction: 2Ag⁺(aq) + Mn(s) ⇄ 2Ag(s) + Mn²⁺(aq)
In the oxidation half reaction, the oxidation number increases:
Mn changes from 0, in the ground state to Mn²⁺.
The reduction half reaction occurs where the element decrease the oxidation number, because it is gaining electrons.
Silver changes from Ag⁺ to Ag.
1. The oxidation half-reaction is: Mn(s) ⇄ Mn²⁺(aq) + 2e⁻
2. The reduction half-reaction is: Ag⁺(aq) + 1e⁻ ⇄ Ag(s)
To balance the hole reaction, we need to multiply by 2, the second half reaction:
Mn(s) ⇄ Mn²⁺(aq) + 2e⁻
(Ag⁺(aq) + 1e⁻ ⇄ Ag(s)) . 2
2Ag⁺(aq) + 2e⁻ ⇄ 2Ag(s)
Now we sum, and we can cancel the electrons:
2Ag⁺(aq) + Mn(s) + 2e⁻ ⇄ 2Ag(s) + Mn²⁺(aq) + 2e⁻
<h3>
Answer:</h3>
0.75 moles NaOH
<h3>
Explanation:</h3>
We are given;
Volume of NaOH solution = 2.5 Liters
Molarity of NaOH = 0.300 M
We are required to calculate the moles of NaOH
We need to establish the relationship between moles, molarity and volume of a solution.
That would be;
Concentration/molarity = Moles ÷ Volume
Therefore;
Moles = Concentration × Volume
Thus;
Moles of NaOH = 0.300 moles × 2.50 L
= 0.75 moles
Therefore, the number of moles of NaOH is 0.75 moles
The charge of a proton is positive.