Answer: A light bulb in the same room at the same temperature.
Explanation: Yw, BYE!!!
What we're looking for here is the gas sample's molar mass given its mass, pressure, volume, and temperature. Recalling the gas law, we have

or

where R is <span>0.08206 L atm / mol K, P is the given pressure, T is the temperature, and V is the volume.
Before applying the values given, it is important to make sure that they are to be converted to have consistent units with that of R.
</span>
Thus, we have
P = 736/ 729 = 0.968 atm
T = 28 + 273.15 = 301.15 K
V = 250/1000 = 0.250 L
Now, applying these converted values into the gas law, we have


Given that the mass of the sample is 0.430 g, we have

Thus, the gas sample has a molar mass of 43.9 g/mol.
Answer: 0.0826mol
PV=nRT
n=PV/RT
n=(1atm)(2.1L)/(310K)(0.082057L*atm/mol*K)=0.0826mol
Answer:
Obtención. El carbono se encuentra - frecuentemente muy puro - en la naturaleza, en estado elemental, en las formas alotrópicas diamante y grafito. El material natural más rico en carbono es el carbón (del cual existen algunas variedades). Grafito: Se encuentra en algunos yacimientos naturales muy puro.
Answer:
The answer to the question is
The rate constant for the reaction is 1.056×10⁻³ M/s
Explanation:
To solve the question, e note that
For a zero order reaction, the rate law is given by
[A] = -k×t + [A]₀
This can be represented by the linear equation y = mx + c
Such that y = [A], m which is the gradient is = -k, and the intercept c = [A]₀
Therefore the rate constant k which is the gradient is given by
Gradient =
where [A]₁ = 8.10×10⁻² M and [A]₂ = 1.80×10⁻³ M
=
= -0.001056 M/s = -1.056×10⁻³ M/s
Threfore k = 1.056×10⁻³ M/s