<u>Answer:</u>

<u>Step-by-step explanation:</u>
Given dimensions of the box = 20cm × 6cm × 4cm .
Dimension of the cube = 2cm × 2cm × 2cm .
Therefore the number of cubes that can be fitted into the box will be equal to the Volume of box divided by the Volume of the cube. So ,


<h3>
<u>Hence</u><u> the</u><u> </u><u>number</u><u> </u><u>of</u><u> </u><u>cubes</u><u> </u><u>that</u><u> </u><u>can</u><u> </u><u>be</u><u> </u><u>fitted</u><u> </u><u>in</u><u> the</u><u> </u><u>box </u><u>is</u><u> </u><u>6</u><u>0</u><u> </u><u>.</u></h3>
Add it up then you will get answer
Answer: An x and y value, parenthesis around the values, and a comma in between them.
Examples of ordered pairs: (2, 5), (1872, 1683), (-3, 7), (7/8, -10/2)
∫(t = 2 to 3) t^3 dt
= (1/4)t^4 {for t = 2 to 3}
= 65/4.
----
∫(t = 2 to 3) t √(t - 2) dt
= ∫(u = 0 to 1) (u + 2) √u du, letting u = t - 2
= ∫(u = 0 to 1) (u^(3/2) + 2u^(1/2)) du
= [(2/5) u^(5/2) + (4/3) u^(3/2)] {for u = 0 to 1}
= 26/15.
----
For the k-entry, use integration by parts with
u = t, dv = sin(πt) dt
du = 1 dt, v = (-1/π) cos(πt).
So, ∫(t = 2 to 3) t sin(πt) dt
= (-1/π) t cos(πt) {for t = 2 to 3} - ∫(t = 2 to 3) (-1/π) cos(πt) dt
= (-1/π) (3 * -1 - 2 * 1) + [(1/π^2) sin(πt) {for t = 2 to 3}]
= 5/π + 0
= 5/π.
Therefore,
∫(t = 2 to 3) <t^3, t√(t - 2), t sin(πt)> dt = <65/4, 26/15, 5/π>.