Answer:
The reason for the offspring to present these genotypes is that during the formation of the gametes, the alleles separate and are inherited independently, therefore they can generate several different phenotypic combinations.
Explanation:
In order for an offspring to present very different phenotypes, as shown in the question above, it is necessary that the two red griffins with blue eyes that were crossed are heterozygous. Thus it will be possible for the offspring to present a wide variety of phenotype, according to Mendel's second law.
Mendel's second law is called the Law of segregation. This law explains that the alleles (which determine the characteristics of individuals) are separated in the formation of gametes and inherited by the offspring of a cross independently, and can generate different combinations of phenotypes, when the parents of a cross are heterozygous.
Answer:
There are two possibilities: The offspring can either be HH or Hh; therefore, there is a 50% chance of the offspring being one of the two above. This means that there is a 50% chance off the offspring being tall or short.
Answer:
Anticodon. The anticodon region of a transfer RNA is a sequence of three bases that are complementary to a codon in the messenger RNA. During translation , the bases of the anticodon form complementary base pairs witht the bases of the codon by forming the appropriate hydrogen bonds.
I think answer might be d.