Answer:
43-7i
Step-by-step explanation:
We are given the expression:

First, expand 3-4i in 6i+7. To expand binomial with binomial, first we expand 3 in 6i+7 then expand -4i in 6i+7.
![\displaystyle \large{[(3 \cdot 6i) + (3 \cdot 7) + ( - 4i \cdot 6i) + ( - 4i \cdot 7)]- (2 - 3i)} \\ \displaystyle \large{[18i + 21 - 24 {i}^{2} - 28i]- (2 - 3i)}](https://tex.z-dn.net/?f=%20%5Cdisplaystyle%20%5Clarge%7B%5B%283%20%5Ccdot%206i%29%20%2B%20%283%20%5Ccdot%207%29%20%2B%20%28%20-%204i%20%5Ccdot%206i%29%20%2B%20%28%20-%204i%20%5Ccdot%207%29%5D-%20%282%20-%203i%29%7D%20%20%5C%5C%20%20%5Cdisplaystyle%20%5Clarge%7B%5B18i%20%2B%2021%20%20-%2024%20%7Bi%7D%5E%7B2%7D%20%20-%2028i%5D-%20%282%20-%203i%29%7D%20)
Now combine like terms.
![\displaystyle \large{[ - 10i+ 21 - 24 {i}^{2} ]- (2 - 3i)}](https://tex.z-dn.net/?f=%20%20%5Cdisplaystyle%20%5Clarge%7B%5B%20-%2010i%2B%2021%20%20-%2024%20%7Bi%7D%5E%7B2%7D%20%5D-%20%282%20-%203i%29%7D%20)
<u>I</u><u>m</u><u>a</u><u>g</u><u>i</u><u>n</u><u>a</u><u>r</u><u>y</u><u> </u><u>U</u><u>n</u><u>i</u><u>t</u>

Therefore:-
![\displaystyle \large{[ - 10i+ 21 - 24 ( - 1) ]- (2 - 3i)} \\ \displaystyle \large{[ - 10i+ 21 + 24]- (2 - 3i)} \\ \displaystyle \large{[ - 10i+ 45]- (2 - 3i)}](https://tex.z-dn.net/?f=%20%20%5Cdisplaystyle%20%5Clarge%7B%5B%20-%2010i%2B%2021%20%20-%2024%20%20%28%20-%201%29%20%5D-%20%282%20-%203i%29%7D%20%20%5C%5C%20%20%20%5Cdisplaystyle%20%5Clarge%7B%5B%20-%2010i%2B%2021%20%20%20%2B%2024%5D-%20%282%20-%203i%29%7D%20%20%5C%5C%20%20%20%5Cdisplaystyle%20%5Clarge%7B%5B%20-%2010i%2B%2045%5D-%20%282%20-%203i%29%7D%20)
Then expand negative sign in 2-3i; remember that negative times negative is positive and negative times positive is negative.

Combine like terms.

5.692 is a terminating decimal because the decimal stopped at the digit of 2.
Hope this helps!
The sequence is to take the previous number and multiply by 4, so the sequence is
3 12 48 192 768 3072 12288
add them all up and you get 16383
Answer:
x=y-6/3y+1
Step-by-step explanation:
3xy+x=y−6
Step 1: Factor out variable x.
x(3y+1)=y−6
Step 2: Divide both sides by 3y+1.
x(3y+1)
3y+1
=
y−6
3y+1
Answer:
1, -6 and -5
Explanation:
To solve the equation means to get the values of n which satisfy the given equation.
The equation given is:
(n-1) (n+6) (n+5) = 0
This equation will be true if any of the terms (brackets) is equal to zero.
This means that:
either n-1 = 0 .............> n = 1
or n + 6 = 0 ................> n = -6
or n + 5 = 0 ................> n = -5
Hope this helps :)