1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sergey [27]
3 years ago
14

150 adults complete a survey

Mathematics
2 answers:
Kobotan [32]3 years ago
8 0

Answer:

7/8

Step-by-step explanation:

150-80=70

70/80 simplest form is 7/8

goldenfox [79]3 years ago
5 0

Answer:

7/8

Step-by-step explanation:

150-80 = 70

70/80 simplified is 7/8

You might be interested in
On a map with a scale of 2 cm = 1 km, the
Hunter-Best [27]

Answer:

A. 2.3km

Step-by-step explanation:

Since 2cm = 1km

4.6cm = xkm

xkm = 4.6 x 1 / 2

= 2.3km

5 0
3 years ago
Read 2 more answers
A line contains the points M (-2,5) and N (2,0) what is the slope of MN. A-7/2 B -2/7. C -4/5 D -5/4
Wewaii [24]

Answer:

Step-by-step explanation:

-5-0

2+2

-5/4 is your answer, D

y2-y1/x2-x1

8 0
3 years ago
What is an equation of the line that passes through the point
Ainat [17]

Answer:

4x + 5y =  - 20

Step-by-step explanation:

1. Understand that a straight line that is perpendicular to another will have an opposite slope to the same.

2. Convert the equation to slope-intercept form, to manipulate it more easily:

5x - 4y = 16 \\ y =  \frac{5}{4} x - 4

3. Take the slope, and get the opposite. Then replace the variables with the given points.

- 8 =   - \frac{4}{5} (5) - 4 \\  - 8 =  - 4 - 4 = \\  - 8 =  - 8

Therefore, your finished equation would be:

y =   - \frac{4}{5} x - 4

or

4 x + 5y =  - 20

4 0
3 years ago
Multiple 12 Times 17 Times 15 =
Kryger [21]
That equals 3060 when you multiply it
5 0
3 years ago
Read 2 more answers
Find the area of the region enclosed by the graphs of these equations. (CALCULUS HELP)
sergiy2304 [10]

Answer:

\displaystyle A = \frac{20\sqrt{15}}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

  1. Multiplication Property of Equality
  2. Division Property of Equality
  3. Addition Property of Equality
  4. Subtraction Property of Equality

<u>Algebra I</u>

  • Terms/Coefficients
  • Graphing
  • Exponential Rule [Root Rewrite]:                                                                   \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Area - Integrals

U-Substitution

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Area of a Region Formula:                                                                                     \displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

F: y = √(15 - x)

G: y = √(15 - 3x)

H: y = 0

<u>Step 2: Find Bounds of Integration</u>

<em>Solve each equation for the x-value for our bounds of integration.</em>

F

  1. Set <em>y</em> = 0:                                                                                                         0 = √(15 - x)
  2. [Equality Property] Square both sides:                                                          0 = 15 - x
  3. [Subtraction Property of Equality] Isolate <em>x</em> term:                                         -x = -15
  4. [Division Property of Equality] Isolate <em>x</em>:                                                        x = 15

G

  1. Set y = 0:                                                                                                         0 = √(15 - 3x)
  2. [Equality Property] Square both sides:                                                          0 = 15 - 3x
  3. [Subtraction Property of Equality] Isolate <em>x</em> term:                                         -3x = -15
  4. [Division Property of Equality] Isolate <em>x</em>:                                                        x = 5

This tells us that our bounds of integration for function F is from 0 to 15 and our bounds of integration for function G is 0 to 5.

We see that we need to subtract function G from function F to get our area of the region (See attachment graph for visual).

<u>Step 3: Find Area of Region</u>

<em>Integration Part 1</em>

  1. Rewrite Area of Region Formula [Integration Property - Subtraction]:     \displaystyle A = \int\limits^b_a {f(x)} \, dx - \int\limits^d_c {g(x)} \, dx
  2. [Integral] Substitute in variables and limits [Area of Region Formula]:     \displaystyle A = \int\limits^{15}_0 {\sqrt{15 - x}} \, dx - \int\limits^5_0 {\sqrt{15 - 3x}} \, dx
  3. [Area] [Integral] Rewrite [Exponential Rule - Root Rewrite]:                       \displaystyle A = \int\limits^{15}_0 {(15 - x)^{\frac{1}{2}}} \, dx - \int\limits^5_0 {(15 - 3x)^{\frac{1}{2}}} \, dx

<u>Step 4: Identify Variables</u>

<em>Set variables for u-substitution for both integrals.</em>

Integral 1:

u = 15 - x

du = -dx

Integral 2:

z = 15 - 3x

dz = -3dx

<u>Step 5: Find Area of Region</u>

<em>Integration Part 2</em>

  1. [Area] Rewrite [Integration Property - Multiplied Constant]:                       \displaystyle A = -\int\limits^{15}_0 {-(15 - x)^{\frac{1}{2}}} \, dx + \frac{1}{3}\int\limits^5_0 {-3(15 - 3x)^{\frac{1}{2}}} \, dx
  2. [Area] U-Substitution:                                                                                   \displaystyle A = -\int\limits^0_{15} {u^{\frac{1}{2}}} \, du + \frac{1}{3}\int\limits^0_{15} {z^{\frac{1}{2}}} \, dz
  3. [Area] Reverse Power Rule:                                                                         \displaystyle A = -(\frac{2u^{\frac{3}{2}}}{3}) \bigg|\limit^0_{15} + \frac{1}{3}(\frac{2z^{\frac{3}{2}}}{3}) \bigg|\limit^0_{15}
  4. [Area] Evaluate [Integration Rule - FTC 1]:                                                   \displaystyle A = -(-10\sqrt{15}) + \frac{1}{3}(-10\sqrt{15})
  5. [Area] Multiply:                                                                                               \displaystyle A = 10\sqrt{15} + \frac{-10\sqrt{15}}{3}
  6. [Area] Add:                                                                                                     \displaystyle A = \frac{20\sqrt{15}}{3}

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Area Under the Curve - Area of a Region (Integration)

Book: College Calculus 10e

3 0
3 years ago
Other questions:
  • Can someone show me an example of long division?
    14·2 answers
  • What is the answer to f(x) = -x and it needs to be a graph
    7·2 answers
  • There are 240 calories in 4 ounces of honey. How many calories are in 1 pound? (Note: 1 pound = 16 ounces)
    8·1 answer
  • Help answer this question
    8·1 answer
  • Could someone help with the answers to these two questions ?
    9·1 answer
  • pls help me any bit can help need it asap though. only need part lll the words cutt of are show work​
    11·1 answer
  • What is the least common denominator of <br><br> 8 and 7
    11·2 answers
  • A quadrilateral has the following vertices J (-1,4), K (2, 4), L (-1,1), M (2,1). After a translation, the image of the quadrila
    5·2 answers
  • 1+1= here are some easy points
    8·2 answers
  • WOSJAJZHQHDJC HELP PLEASE ‍♀️‍♀️‍♀️
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!