Answer:
I believe its 9 hours.
Step-by-step explanation:
Divide 180 by 12 to get 15
So Linda makes 15 dollars an hour
Then divide 135 by 15 to get 9
Linda would need to work 9 hours to get $135
Since the solution will be of the form z=k it has one solution...
3.5z=2.25z-4.25+6.25
3.5z=2.25z+2
1.25z=2
z=1.6
A single solution...
I will use the letter x instead of theta.
Then the problem is, given sec(x) + tan(x) = P, show that
sin(x) = [P^2 - 1] / [P^2 + 1]
I am going to take a non regular path.
First, develop a little the left side of the first equation:
sec(x) + tan(x) = 1 / cos(x) + sin(x) / cos(x) = [1 + sin(x)] / cos(x)
and that is equal to P.
Second, develop the rigth side of the second equation:
[p^2 - 1] / [p^2 + 1] =
= [ { [1 + sin(x)] / cos(x) }^2 - 1] / [ { [1 + sin(x)] / cos(x)}^2 +1 ] =
= { [1 + sin(x)]^2 - [cos(x)]^2 } / { [1 + sin(x)]^2 + [cos(x)]^2 } =
= {1 + 2sin(x) + [sin(x)^2] - [cos(x)^2] } / {1 + 2sin(x) + [sin(x)^2] + [cos(x)^2] }
= {2sin(x) + [sin(x)]^2 + [sin(x)]^2 } / { 1 + 2 sin(x) + 1} =
= {2sin(x) + 2 [sin(x)]^2 } / {2 + 2sin(x)} = {2sin(x) ( 1 + sin(x)} / {2(1+sin(x)} =
= sin(x)
Then, working with the first equation, we have proved that [p^2 - 1] / [p^2 + 1] = sin(x), the second equation.
Answer:
The maximum number of turns is 3
Step-by-step explanation:
The given function is

The degree of this polynomial is 4.
If the degree of a given polynomial is n, then the polynomial has at least n-1 turns.
Therefore the number of turns of this 4th degree polynomial is at least 3.
The answer 16 will be what you are looking for.