Answer:
V = 128π/3 vu
Step-by-step explanation:
we have that: f(x)₁ = √(4 - x²); f(x)₂ = -√(4 - x²)
knowing that the volume of a solid is V=πR²h, where R² (f(x)₁-f(x)₂) and h=dx, then
dV=π(√(4 - x²)+√(4 - x²))²dx; =π(2√(4 - x²))²dx ⇒
dV= 4π(4-x²)dx , Integrating in both sides
∫dv=4π∫(4-x²)dx , we take ∫(4-x²)dx and we solve
4∫dx-∫x²dx = 4x-(x³/3) evaluated -2≤x≤2 or too 2 (0≤x≤2) , also
∫dv=8π∫(4-x²)dx evaluated 0≤x≤2
V=8π(4x-(x³/3)) = 8π(4.2-(2³/3)) = 8π(8-(8/3)) =(8π/3)(24-8) ⇒
V = 128π/3 vu
Well, we could make the number of lawns he mowed as 'L'
In this case, the total money that Gavin makes is 8.5L
Just Half it down the middle.
Answer:
wouldn't that be 81 but i dont know

![\qquad \tt \rightarrow \:Domain = [-9, -1]](https://tex.z-dn.net/?f=%5Cqquad%20%5Ctt%20%5Crightarrow%20%5C%3ADomain%20%3D%20%5B-9%2C%20-1%5D)
![\qquad \tt \rightarrow \:Range = [-1 , 3]](https://tex.z-dn.net/?f=%5Cqquad%20%5Ctt%20%5Crightarrow%20%5C%3ARange%20%3D%20%5B-1%20%2C%203%5D)
____________________________________

Domain = All possible values of x for which f(x) is defined
[ generally the extension of function in x - direction ]
Range = All possible values of f(x)
[ generally the extension of function in y - direction ]

![\qquad \tt \rightarrow \: domain = [ - 9, -1]](https://tex.z-dn.net/?f=%5Cqquad%20%5Ctt%20%5Crightarrow%20%5C%3A%20domain%20%3D%20%5B%20-%209%2C%20-1%5D)
![\qquad \tt \rightarrow \: range= [ -1,3]](https://tex.z-dn.net/?f=%5Cqquad%20%5Ctt%20%5Crightarrow%20%5C%3A%20range%3D%20%5B%20-1%2C3%5D)
Answered by : ❝ AǫᴜᴀWɪᴢ ❞