Answer:
B) t = 1.83 [s]
A) y = 16.51 [m]
Explanation:
To solve this problem we must use the following equation of kinematics.

where:
Vf = final velocity = 0
Vo = initial velocity = 18 [m/s]
g = gravity acceleration = 9.81 [m/s²]
t = time [s]
Note: the negative sign in the above equation means that the acceleration of gravity is acting in the opposite direction to the motion.
A) The maximum height is reached when the final velocity of the ball is zero.
0 = 18 - (9.81*t)
9.81*t = 18
t = 18/9.81
t = 1.83 [s], we found the answer for B.
Now using the following equation.

where:
y = elevation [m]
Yo = initial elevation = 0
y = 18*(1.83) - 0.5*9.81*(1.83)²
y = 16.51 [m]
Answer:
U = (ε0AV^2) / 2d
Explanation:
Where C= capacitance of the capacitor
ε0= permittivity of free space
A= cross sectional area of plates
d= distance between the plates
V= potential difference
First, the capacitance of a capacitor is obtained by:
C = ε0A/d.
Starting at the formula , U= (CV^2)/2. Formula for energy stored in a capacitor
Substitute in for C:
U = (ε0A/d) * V^2 / 2
Hence:
U = (ε0AV^2) / 2d
They should look for <span>a report from an independent scientific research firm,
even if they have to pay for it.
In preparing its report, the firm would have already surveyed many of the </span>
<span>citizens from several other towns that currently add fluoride to their water,
plus a lot of other relevant medical research on the subject.</span>
Hey :)
The water potential of pure water<span> in an open container is zero because there is no solute and the pressure in the container is zero</span>
The total time is 6.45 s
Explanation:
The motion of the car is a uniformly accelerated motion, so we can use suvat equations.
In the first part,
(initial velocity)
(acceleration)
(time of the first part)
So, we can find the velocity of the car after the first part, by using

This is therefore the initial velocity of the second part:

(acceleration in the second part)
(final velocity)
And therefore,

So, the total time is

Learn more about uniformly accelerated motion:
brainly.com/question/9527152
brainly.com/question/11181826
brainly.com/question/2506873
brainly.com/question/2562700
#LearnwithBrainly