Answer: D
Explanation:
Kinetic energy = 1/2mV^2
From the formula above, we can deduce that kinetic energy is proportional to the square of speed. That is,
K.E = V^2
Graphically, the relationship isn't linear but a positive exponential. Therefore, option D is the correct answer.
The prokaryotic cells are indeed smaller than the eularyotic cells.
Eukaruotic cell size -10-100um
Prokaryotic cell size - 1-10 um
Answer:
The distance d from the car at which the sound from the stereo can still be discerned = 97720.5 m
Explanation:
Sound intensity heard at distance is related to the distance with the relation = (power of sound at the source)/(surface area of the wall of an imaginary sphere at the distance in question)
I = P/4πd²
Assuming the car has 2 speakers,
P = 0.06 W × 2 = 0.12 W
d = ?
For the intensity of the least discernible sound,
I = 10⁻¹² W/m²
10⁻¹² = 0.12/4πd²
d = 97720.5 m
Answer:
92.25m
Explanation:
In order to solve the exercise, it is necessary to apply the concept of construtive interference due to a path difference.
The formula is given by,

where,
n is the index of refraction of the medium in which the wave is traveling
wavelenght
is the path difference
m = integer (0,1,2,3...)
Since in this case we are dealing with an atmospheric environment, where air is predominant, we approximate n to 1.
And since we need the reflected wave,

Where x is the distance in one direction without return.
The distance must correspond to the minimum therefore m = 0, so



Then the minimum distance is:



Therefore the minimum distance from the mountain to the receiver that produces destructive interference at the receiver is 92.25m