Answer:48.2 Joules
Explanation:
Given
two masses of 0.2 kg and 0.4 kg collide with each other
after collision 0.2 kg deflect 30 north of east and 0.4 kg deflects 53.1 south of east
Velocity of 0.2 kg mass is


Velocity of 0.4 kg mass


Thus total Kinetic energy 
Kinetic energy=48.2 J
Answer:
τ=0.060 N.m
Explanation:
By kinematics:

Solving for α:

where ωo = 600*2*π/60; ωf = 0; t=10s

The sum of torque is:



Change in velocity = d(v)
d(v) = v2 - v1 where v1 = initial speed, v2 = final speed
v1 = 28.0 m/s to the right
v2 = 0.00 m/s
d(v) = (0 - 28)m/s = -28 m/s to the right
Change in time = d(t)
d(t) = t2 - t1 where t1 = initial elapsed time, t2 = final elapsed time
t1 = 0.00 s
t2 = 5.00 s
d(t) = (5.00 - 0.00)s = 5.00s
Average acceleration = d(v) / d(t)
(-28.0 m/s) / (5.00 s)
(-28.0 m)/s * 1 / (5.00 s) = -5.60 m/s² to the right
Answer:
ΔR = 9 s
Explanation:
To calculate the propagation of the uncertainty or absolute error, the variation with each parameter must be calculated and the but of the cases must be found, which is done by taking the absolute value
The given expression is R = 2A / B
the uncertainty is ΔR = |
| ΔA + |
| ΔB
we look for the derivatives
= 9 / B
= 9A (
)
we substitute
ΔR =
ΔA +
ΔB
the values are
ΔA = 2 s
ΔB = 3 s
ΔR =
2 +
3
ΔR = 1.636 + 7.14
ΔR = 8,776 s
the absolute error must be given with a significant figure
ΔR = 9 s