Answer:
drishyam 2 train to bysan
Step-by-step explanation:
Answer: 117.6° ; 32.4° .
_________________________
Explanation:
_______________________________________________________
Note: ALL triangles, by definition, have exactly 3 (THREE) sides and exactly 3 (THREE) angles.
_____________________
We are given the following:
_______________________
We have a triangle.
Angle 1: m∡1 = (8x) ;
Angle 2: m∡2 = (2x + 3) ;
Angle 3: m∡3 = 30.
______________________________________
We are asked to find: "m∡1" and " m∡2" .
______________________________________
Note: In ALL TRIANGLES, the measurements of all THREE (3) angles ALWAYS add up to 180 degrees.
________________________________________
So, " m∡1 + m∡2 + m∡3 = 180 " .
________________________________________
Let us substitute our given values for the measurements in EACH of
the THREE (3) angles — on the left-hand side of the equation; then solve for "x" ; then substitute that solved value for "x" into the given expressions for BOTH "m∡1" AND "m∡2" ; to find the values for " m∡1" AND " m∡2 " ; which are the values asked for in this very question ;
___________________________________________
m∡1 + m∡2 + m∡3 = 180 ;
___________________________________________
8x + (2x + 3) + 30 = 180 ;
___________________________________________
8x + 2x + 3 + 30 = 180 ;
___________________________________________
Combine the "like terms" on the 'left-hand side" of the equation; to simplify:
____________________________________________________________
+8x + 2x = +10x ;
___________________________________________
+3 + 30 = +33 ;
___________________________________________
Rewrite the entire equation, as:
___________________________________________
10x + 33 = 180 ;
___________________________________________
Now, subtract "33" from EACH SIDE of the equation:
___________________________________________
10x + 33 − 33 = 180 −<span> 33 ;
___________________________________________
to get:
___________________________________________
10x = 147 ;
____________________________________________
Now, divide EACH side of the equation by "10" ; to isolate "x" on ONE SIDE of the equation; and to solve for "x" :
____________________________________________
10x / 10 = 147 / 10 ;
____________________________________________
to get:
____________________________________________
x = 14.7 ;
___________________________________________
Now, given the following, we plug in our solved value, "14.7", for "x", into the expression given for "m</span>∡1" and "m∡2"; as follows:
________________________________________________
Angle 1: "(8x)" = 8*(14.7) = 117.6° ;
________________________________________________
Angle 2: "2x + 3" = 2*(14.7) + 3 = 29.4 + 3 = 32.4° ;
________________________________________________
These are the two answers; that is the 2 (TWO) values asked for in the question: 117.6° ; 32.4° .
<span>____________________________________</span><span>
Do they make sense? That is, do the measurements of ALL 3 (THREE) angles; that is, our two solved measurements added together, and then added to the value of the third angle (given: "m</span>∡3 = 30°); all add up to 180° ?
___________________________________________
Let us check:
_______________________________
m∡1 + m∡2 + m∡3 = 180 ;
_______________________________
Plugging in our solved values for "m∡1" and "m∡2" ; and our given value: "30" — for "m∡3 — does the equation hold true?
______________________________________________
→ 117.6 + 32.4 + 30 = ? 180 ??
______________________________________________
→ 117.6 + 32.4 = 150 ; → 150 + 30 =? 180 ? Yes!
______________________________________________
Answer:
Left up x=34
Left down x=87
Right x=17
Step-by-step explanation:
The picture is the working out.
A=number of seats in section A
B=number of seats in section B
C=number of seats in section C
We can suggest this system of equations:
A+B+C=55,000
A=B+C ⇒A-B-C=0
28A+16B+12C=1,158,000
We solve this system of equations by Gauss Method.
1 1 1 55,000
1 -1 -1 0
28 16 12 1,158,000
1 1 1 55,000
0 -2 -2 -55,000 (R₂-R₁)
0 12 16 382,000 (28R₁-R₂)
1 1 1 55,000
0 -2 -2 -55,000
0 0 4 52,000 (6R₂+R₃)
Therefore:
4C=52,000
C=52,000/4
C=13,000
-2B-2(13,000)=-55,000
-2B-26,000=-55,000
-2B=-55,000+26,000
-2B=-29,000
B=-29,000 / -2
B=14,500.
A + 14,500+13,000=55,000
A+27,500=55,000
A=55,000-27,500
A=27,500.
Answer: there are 27,500 seats in section A, 14,500 seats in section B and 13,000 seats in section C.