Answer:
Las cantidades empleadas para su preparación son: 15 onzas de solución al 20 % y 35 onzas de solución al 40 %.
Step-by-step explanation:
Podemos estimar la proporción de ingredientes mediante el siguiente promedio ponderado:
(1)
Donde:
- Masa de la solución al 20 %, en onzas.
- Masa de la solución al 40 %, en onzas.
Podemos simplificar la formula como sigue:
(2)
Donde
es la proporción de la solución al 20 % dentro de la solución final, sin unidades.
Ahora resolvemos para
en (2):




Este resultado quiere decir que la solución al 34 % es el resultado de 30 % de la solución al 20 % y 70 % de la solución al 40 %. Si conocemos que la solución final tiene una masa de 50 onzas, entonces las cantidades empleadas para su preparación son: 15 onzas de solución al 20 % y 35 onzas de solución al 40 %.
Answer:
The sample space for selecting the group to test contains <u>2,300</u> elementary events.
Step-by-step explanation:
There are a total of <em>N</em> = 25 aluminum castings.
Of these 25 aluminum castings, <em>n</em>₁ = 4 castings are defective (D) and <em>n</em>₂ = 21 are good (G).
It is provided that a quality control inspector randomly selects three of the twenty-five castings without replacement to test.
In mathematics, the procedure to select k items from n distinct items, without replacement, is known as combinations.
The formula to compute the combinations of k items from n is given by the formula:

Compute the number of samples that are possible as follows:


The sample space for selecting the group to test contains <u>2,300</u> elementary events.
It should be B I know how to do it
First, let’s all acknowledge that whoever comes up with problems like this WANTS kids to hate math...smh
I’m sure there is a prettier way to solve this, but here’s what I did:
8(2.25) + 3(22.50) =
18 + 67.50 = 85.50 per “set” of balls/jerseys
400/85.50 = 4.678 = number of “sets” he can buy. Round down to 4 so we have room for tax.
85.5 x 4 “sets”= $342
Tax on 342 is 0.06 x 342 = 20.52
$342 + 20.52 = $362.52 spent
Basketballs = 4 sets x 8 balls per set= 32
Jerseys = 4 sets x 3 jerseys per set= 12
32 basketballs, 12 jerseys, $362.52 spent