<span>Answer:
The multiplication factor of increase should be inverse of the multiplication factor of decrease.
e.g. Say you have a number 100.
You increase it by 25%. The multiplication factor is 5/4 i.e. when you multiply 100 by 5/4, you get 100*5/4 = 125. This is 25% more than 100.
Now you want to decrease it by a certain % such that you get 100 back.
Basically, 100*5/4 * x = 100
So x = 4/5 (inverse of 5/4)
Hence, you decrease by 20% (the multiplication factor of 20% is 4/5)
or
Use this formula: cumulative % change = a + b + ab/100
You want the cumulative change to be 0.
a + b + ab/100 = 0
If you know that you are increasing by 25% and want to find the % by which you should decrease to get the same number,
25 + b + 25b/100 = 0
5b/4 = -25
b = -20
So you need to decrease (hence you get the -ve sign) by 20%.</span>
I would start like this: which year was the seventh AMC 8??
the first was in 1985
The second: 1986
3: 1987
4: 1988
5: 1989
6: 1990
7: 1991
so seventh AMC 8 took place in 1991.
she was then 12, so we can subtract this age from 1991:
1991-12=1979
so she was born in 1979!
Answer:
Yes it does
Step-by-step explanation:
(125/35)=(25/7)
((125/5)/(35/5))=(25/7)
(25/7)=(25/7)
<em>u={1,2,3,4,5},A={2,4} and Beta {2,5,5}</em>
<em>now</em><em>,</em><em> </em><em>(AUB)</em><em>=</em><em>{</em><em>1</em><em>,</em><em>3</em><em>,</em><em>3</em><em>,</em><em>4</em><em>,</em><em>5</em><em>}</em>
<em>[</em><em>AUB</em><em> </em><em>is</em><em> </em><em>the</em><em> </em><em>set</em><em> </em><em>of</em><em> </em><em>all</em><em> </em><em>elements</em><em> </em><em>of</em><em> </em><em>set</em><em> </em><em>A</em><em> </em><em>and</em><em> </em><em>set</em><em> </em><em>B</em><em> </em><em>without </em><em>any</em><em> </em><em>repetition </em><em>]</em>
<em>n</em><em>(</em><em>AUB</em><em>)</em><em>=</em><em>5</em>
<em>n</em><em>(</em><em>AUB</em><em>)</em><em>is</em><em> </em><em>the</em><em> </em><em>total</em><em> </em><em>no</em><em> </em><em>of</em><em> </em><em>elements</em><em> </em><em>in</em><em> </em><em>set</em><em> </em><em>(</em><em>AUB</em><em>)</em>