Let P be Brandon's starting point and Q be the point directly across the river from P.
<span>Now let R be the point where Brandon swims to on the opposite shore, and let </span>
<span>QR = x. Then he will swim a distance of sqrt(50^2 + x^2) meters and then run </span>
<span>a distance of (300 - x) meters. Since time = distance/speed, the time of travel T is </span>
<span>T = (1/2)*sqrt(2500 + x^2) + (1/6)*(300 - x). Now differentiate with respect to x: </span>
<span>dT/dx = (1/4)*(2500 + x^2)^(-1/2) *(2x) - (1/6). Now to find the critical points set </span>
<span>dT/dx = 0, which will be the case when </span>
<span>(x/2) / sqrt(2500 + x^2) = 1/6 ----> </span>
<span>3x = sqrt(2500 + x^2) ----> </span>
<span>9x^2 = 2500 + x^2 ----> 8x^2 = 2500 ---> x^2 = 625/2 ---> x = (25/2)*sqrt(2) m, </span>
<span>which is about 17.7 m downstream from Q. </span>
<span>Now d/dx(dT/dx) = 1250/(2500 + x^2) > 0 for x = 17.7, so by the second derivative </span>
<span>test the time of travel, T, is minimized at x = (25/2)*sqrt(2) m. So to find the </span>
<span>minimum travel time just plug this value of x into to equation for T: </span>
<span>T(x) = (1/2)*sqrt(2500 + x^2) + (1/6)*(300 - x) ----> </span>
<span>T((25/2)*sqrt(2)) = (1/2)*(sqrt(2500 + (625/2)) + (1/6)*(300 - (25/2)*sqrt(2)) = 73.57 s.</span><span>
</span><span>
</span><span>
</span><span>
</span><span>mind blown</span>
Answer:
r=6
Step-by-step explanation:
The area of a circle is given by πr². Note that this uses the radius, not the diameter.
Now, one quarter of this area (ABC) is given to be 9π.
So apparently:

If you solve this:
(divide both sides by π)
(multiply both sides by 4)
so
r = √36 = 6
so the radius is 6.
(x-3)^2 / (271/2) + y^2 / (271/4)=1.
Hope I helped☺☺
Answer: 40 cm
Step-by-step explanation:
Area = length x width
A square has 4 equal sides so length = width (they have to be the same number)
10cm x 10cm = 100cm^2 or the square root of 100cm^2 = 10cm
10cm x 4 sides = 40cm