1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leni [432]
3 years ago
8

Solve for the inequality ?

Mathematics
1 answer:
iren2701 [21]3 years ago
4 0
|x|\leq3\\
x\leq 3 \wedge x\geq-3\\
x\in[-3,3]
You might be interested in
In the Journal of Shell and Spatial Structures (December 1963), environmental researcher Vivek Ajmani studied the performance of
igomit [66]

Answer:

The standard deviation of the load distribution is of 5102.041 pounds.

Step-by-step explanation:

When the distribution is normal, we use the z-score formula.

In a set with mean \mu and standard deviation \sigma, the zscore of a measure X is given by:

Z = \frac{X - \mu}{\sigma}

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

In this question, we have that:

\mu = 20000

Also, the probability that the load is between 10,000 and 30,000 pounds is 0.95.

10,000 pounds and 30,000 pounds are equidistant from the mean. Due to this, and the probability of 0.95 of having a value in this range, 10000 is the (100-95)/2 = 2.5th percentile and 30000 is the (100+95)/2 = 97.5th percentile. Applying one of them, we find the standard deviation.

30,000 is the 97.5th percentile:

This means that when X = 30000, Z has a pvalue of 0.975. So when X = 30000, Z = 1.96. Then

Z = \frac{X - \mu}{\sigma}

1.96 = \frac{30000 - 20000}{\sigma}

1.96\sigma = 10000

\sigma = \frac{10000}{1.96}

\sigma = 5102.041

The standard deviation of the load distribution is of 5102.041 pounds.

8 0
4 years ago
Find the area? need help guys!!​
Sergeu [11.5K]
Area = (x+6)(x+2) = x^2 + 8x + 12
8 0
3 years ago
Find equations of the spheres with center(3, −4, 5) that touch the following planes.a. xy-plane b. yz- plane c. xz-plane
postnew [5]

Answer:

(a) (x - 3)² + (y + 4)² + (z - 5)² = 25

(b) (x - 3)² + (y + 4)² + (z - 5)² = 9

(c) (x - 3)² + (y + 4)² + (z - 5)² = 16

Step-by-step explanation:

The equation of a sphere is given by:

(x - x₀)² + (y - y₀)² + (z - z₀)² = r²            ---------------(i)

Where;

(x₀, y₀, z₀) is the center of the sphere

r is the radius of the sphere

Given:

Sphere centered at (3, -4, 5)

=> (x₀, y₀, z₀) = (3, -4, 5)

(a) To get the equation of the sphere when it touches the xy-plane, we do the following:

i.  Since the sphere touches the xy-plane, it means the z-component of its centre is 0.

Therefore, we have the sphere now centered at (3, -4, 0).

Using the distance formula, we can get the distance d, between the initial points (3, -4, 5) and the new points (3, -4, 0) as follows;

d = \sqrt{(3-3)^2+ (-4 - (-4))^2 + (0-5)^2}

d = \sqrt{(3-3)^2+ (-4 + 4)^2 + (0-5)^2}

d = \sqrt{(0)^2+ (0)^2 + (-5)^2}

d = \sqrt{(25)}

d = 5

This distance is the radius of the sphere at that point. i.e r = 5

Now substitute this value r = 5 into the general equation of a sphere given in equation (i) above as follows;

(x - 3)² + (y - (-4))² + (z - 5)² = 5²  

(x - 3)² + (y + 4)² + (z - 5)² = 25  

Therefore, the equation of the sphere when it touches the xy plane is:

(x - 3)² + (y + 4)² + (z - 5)² = 25  

(b) To get the equation of the sphere when it touches the yz-plane, we do the following:

i.  Since the sphere touches the yz-plane, it means the x-component of its centre is 0.

Therefore, we have the sphere now centered at (0, -4, 5).

Using the distance formula, we can get the distance d, between the initial points (3, -4, 5) and the new points (0, -4, 5) as follows;

d = \sqrt{(0-3)^2+ (-4 - (-4))^2 + (5-5)^2}

d = \sqrt{(-3)^2+ (-4 + 4)^2 + (5-5)^2}

d = \sqrt{(-3)^2 + (0)^2+ (0)^2}

d = \sqrt{(9)}

d = 3

This distance is the radius of the sphere at that point. i.e r = 3

Now substitute this value r = 3 into the general equation of a sphere given in equation (i) above as follows;

(x - 3)² + (y - (-4))² + (z - 5)² = 3²  

(x - 3)² + (y + 4)² + (z - 5)² = 9  

Therefore, the equation of the sphere when it touches the yz plane is:

(x - 3)² + (y + 4)² + (z - 5)² = 9  

(b) To get the equation of the sphere when it touches the xz-plane, we do the following:

i.  Since the sphere touches the xz-plane, it means the y-component of its centre is 0.

Therefore, we have the sphere now centered at (3, 0, 5).

Using the distance formula, we can get the distance d, between the initial points (3, -4, 5) and the new points (3, 0, 5) as follows;

d = \sqrt{(3-3)^2+ (0 - (-4))^2 + (5-5)^2}

d = \sqrt{(3-3)^2+ (0+4)^2 + (5-5)^2}

d = \sqrt{(0)^2 + (4)^2+ (0)^2}

d = \sqrt{(16)}

d = 4

This distance is the radius of the sphere at that point. i.e r = 4

Now substitute this value r = 4 into the general equation of a sphere given in equation (i) above as follows;

(x - 3)² + (y - (-4))² + (z - 5)² = 4²  

(x - 3)² + (y + 4)² + (z - 5)² = 16  

Therefore, the equation of the sphere when it touches the xz plane is:

(x - 3)² + (y + 4)² + (z - 5)² = 16

 

3 0
3 years ago
For the given image and scale factor, which ordered pair is one of the pre-image vertices if the center of the pre-image is also
Virty [35]

Answer:

Step-by-step explanation:its the first one 3 5ths ,1

i just took the assignment

4 0
4 years ago
Read 2 more answers
If the radius of a circle is twice as great as
slava [35]

Answer:

how many times larger? 4 times as large

Step-by-step explanation:

if the radius is half as big as the diameter and the diameter is half of the area

<u>r</u> x <u>r</u> = d

<u>d</u> x <u>d</u> =  a

5 0
3 years ago
Other questions:
  • Pleaseeeeeee helpppppp
    11·2 answers
  • 3 cards are drawn from a standard deck of 52 playing cards. How many different 3-card hands are possible if the drawing is done
    8·1 answer
  • An angle measures 47°. What are the measures of the angle’s complement and supplement? (1 point)
    14·1 answer
  • Please help, giving 15 points
    14·1 answer
  • 420/720
    13·1 answer
  • Without graphing, find the slope of the line that goes through
    14·1 answer
  • 1. Solve the system of equations.<br> 2y - 3z=0<br> x+3y = -4<br> 3x + 4y = 3
    10·1 answer
  • Find the measure of one interior angle in each regular polygon. Round to the nearest tenth if necessary
    6·1 answer
  • Divide.
    5·1 answer
  • Geometric mean of 1/3 and 3
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!