Answer:
Jupiter
Explanation:
Since the mass of Jupiter is the greatest from the given choices, it will exert the most force on any object orbiting 100km above its surface.
This is compliance with the Newton's law of universal gravitation which states that "the force of attraction between two bodies is directly proportional to the magnitude of their masses and inversely proportional to the distances between them".
- Therefore, the more the masses of two bodies, the higher the gravitational attraction
- Since the distance is the same, the planet with the greater mass will exert the most force on the satellite.
Answer: 18.35 m/s
Explanation:
At the highest point of trajectory, the vertical component of the velocity would be zero and the tennis ball would have horizontal component of velocity.
It is given that the initial velocity of the ball is 32 m/s and it makes 35° with the vertical. Hence the horizontal component of the velocity,
v sin θ = 32 m/s × sin 35° = 18.35 m/s
Hence, at the highest point in its trajectory, the tennis ball would be moving with the speed 18.35 m/s.
I think fuse with 13 A... because it can withstand overloading...