Answer:
its too small :(
Step-by-step explanation:
1/4th of Mai’s height is equal to 2/5th of Jon’s height
Let 'x' represent Mai's height and 'y' represent Jon's height.
Therefore, 1/4th of "x" should be equal to 2/5th of "y". This gives us the following equation :
(1/4)x = (2/5)y
multiply both sides by 4/y
x/y = 4*(2/5)
x/y = 8/5
x:y = 8:5
The ratio of Mai's s height to Jon's height is 8 to 5
Hi there! :)
Answer:
y = -2x + 3
Step-by-step explanation:
We can write an equation in slope-intercept form. Use the slope formula to find the rate of change in the table:

Plug in values from the table:

Simplify:
m = -2 (rate of change)
Use a point from the table (-2, 7) and the slope to solve for the equation for the linear function:
7 = -2(-2) + b
7 = 4 + b
7 -4 = b
b = 3
Rewrite:
y = -2x + 3 is the equation for the linear function.
The true statements are (1) and (2)
Answer:
The probability of drawing the compliment of a king or a queen from a standard deck of playing cards = 0.846
Step-by-step explanation:
<u><em>Step(i):-</em></u>
Let 'S' be the sample space associated with the drawing of a card
n (S) = 52C₁ = 52
Let E₁ be the event of the card drawn being a king

Let E₂ be the event of the card drawn being a queen

But E₁ and E₂ are mutually exclusive events
since E₁ U E₂ is the event of drawing a king or a queen
<u><em>step(ii):-</em></u>
The probability of drawing of a king or a queen from a standard deck of playing cards
P( E₁ U E₂ ) = P(E₁) +P(E₂)

P( E₁ U E₂ ) = 
<u><em>step(iii):-</em></u>
The probability of drawing the compliment of a king or a queen from a standard deck of playing cards



<u><em>Conclusion</em></u>:-
The probability of drawing the compliment of a king or a queen from a standard deck of playing cards = 0.846