Answer:
1.) 5
2.) 6
Step-by-step explanation:
Answer:
Two triangles are similar if they meet one of the following criteria. : Two pairs of corresponding angles are equal. : Three pairs of corresponding sides are proportional. : Two pairs of corresponding sides are proportional and the corresponding angles between them are equal.
Dos triángulos son similares si cumplen uno de los siguientes criterios. : Dos pares de ángulos correspondientes son iguales. : Tres pares de lados correspondientes son proporcionales. : Dos pares de lados correspondientes son proporcionales y los ángulos correspondientes entre ellos son iguales.
Step-by-step explanation:
Answer:
504
Step-by-step explanation:
I think the correct question is like:The common ratio in a geometric series is 0.50 ( point 5) and the first term is 256.
Find the sum of the first 6 terms in the series.
If it's right, then
Sₙ = (a₁ * (1 - rⁿ)) / (1 - r)
S₆ = (256 * ( 1 - 0.5⁶)) / (1 - 0.5) = (256 * 0.984375) / 0.5 = 504
Answer:
Slope = Rise over Run
Rise = 2
Run = 3
Slope = 2/3
Let me know if this helps!
For the sake of example, let's multiply the two numbers
![2.3 \times 10^5](https://tex.z-dn.net/?f=2.3%20%5Ctimes%2010%5E5%20)
and
![3.5 \times 10^7](https://tex.z-dn.net/?f=3.5%20%5Ctimes%2010%5E7)
together. Altogether, we have:
![2.3\times10^5\times3.5\times10^7](https://tex.z-dn.net/?f=2.3%5Ctimes10%5E5%5Ctimes3.5%5Ctimes10%5E7)
Rearranging the expression, we can group the exponents and coefficients together:
![2.3\times3.5\times10^5\times10^7](https://tex.z-dn.net/?f=2.3%5Ctimes3.5%5Ctimes10%5E5%5Ctimes10%5E7)
Multiplying each out, we notice that since
![10^5](https://tex.z-dn.net/?f=10%5E5)
and
![10^7](https://tex.z-dn.net/?f=10%5E7)
have the same base (10), multiplying them has the effect of adding their exponents, which leaves us with:
![2.3\times3.5\times10^{5+7}=8.05\times10^{12}](https://tex.z-dn.net/?f=2.3%5Ctimes3.5%5Ctimes10%5E%7B5%2B7%7D%3D8.05%5Ctimes10%5E%7B12%7D)
The takeaway here is that multiplying two numbers in scientific notation together has the effect of multiplying its coefficients and <em>adding</em> its exponents.