The maximum volume of the box is 40√(10/27) cu in.
Here we see that volume is to be maximized
The surface area of the box is 40 sq in
Since the top lid is open, the surface area will be
lb + 2lh + 2bh = 40
Now, the length is equal to the breadth.
Let them be x in
Hence,
x² + 2xh + 2xh = 40
or, 4xh = 40 - x²
or, h = 10/x - x/4
Let f(x) = volume of the box
= lbh
Hence,
f(x) = x²(10/x - x/4)
= 10x - x³/4
differentiating with respect to x and equating it to 0 gives us
f'(x) = 10 - 3x²/4 = 0
or, 3x²/4 = 10
or, x² = 40/3
Hence x will be equal to 2√(10/3)
Now to check whether this value of x will give us the max volume, we will find
f"(2√(10/3))
f"(x) = -3x/2
hence,
f"(2√(10/3)) = -3√(10/3)
Since the above value is negative, volume is maximum for x = 2√(10/3)
Hence volume
= 10 X 2√(10/3) - [2√(10/3)]³/4
= 2√(10/3) [10 - 10/3]
= 2√(10/3) X 20/3
= 40√(10/27) cu in
To learn more about Maximization visit
brainly.com/question/14682292
#SPJ4
Complete Question
(Image Attached)
It would be 2 by 2 in inches as the frame can only fit that much , which the area framed would be 4 inches as you multiply 2×2=4
Answer:
B. 30 ft
Step-by-step explanation:
The ladder is 32 ft long
The angle of elevation of the ladder is 70°
The height (h) of the top of the ladder to the ground is what we are to find.
= sin 70°
h = 32 × sin 70° = 30.07016387 or 30 ft (rounded off to nearest feet)
Answer:
28
Step-by-step explanation:
12+[(15-5)]+(9-3)]
PEMDAS
Parentheses first
12+[(10)]+(6)]
Then add
12+10+6