Answer:
An autosomal dominant gene is one that occurs on an autosomal (non-sex determining) chromosome. As it is dominant, the phenotype it gives will be expressed even if the gene is heterozygous.
The chances of an autosomal dominant disorder being inherited are 50% if one parent is heterozygous (NL) for the mutant gene and the other is homozygous for the normal (NN), or 'wild-type', gene. This is because the offspring will always inherit a normal gene from the parent carrying the wild-type genes, and will have a 50% chance of inheriting the mutant gene from the other parent. If the mutant gene is inherited, the offspring will be heterozygous for the mutant gene, and will suffer from the disorder. If the parent with the disorder is homozygous for the gene, the offspring produced from mating with an unaffected parent will always have the disorder.
Explanation:
The answer for your question is b and c.
Hope this helps:)
Place mercury in the reactor. After a large amount of work, only a tiny portion of gold is created.
Decontaminate the resulting gold. This is harder than it sounds because you can't separate out non-radioactive gold from radioactive gold using purely chemical methods.
It should be obvious from this process that it currently costs much more money to create non-radioactive gold than you could ever earn by selling the gold. Creating gold from other elements is currently an expensive laboratory experiment and not a viable commercial activity. Perhaps technology will improve enough in the future to make creation of gold in nuclear reactors a profitable economic enterprise.