<em>x</em> = gallons of the 50% solution
<em>y</em> = gallons of the 75% solution
The total volume of the new mixture is 50 gal, so
<em>x</em> + <em>y</em> = 50
Each gal of 50% solution contributes 0.5 gal of acid, and each gal of the 75% solution contributes 0.75 gal of acid. The final mixture needs to have a concentration of 60% acid, which amounts to 0.6*(50 gal) = 30 gal of acid, so
0.5<em>x</em> + 0.75<em>y</em> = 30
Solve for <em>x</em> and <em>y</em> :
<em>y</em> = 50 - <em>x</em>
0.5<em>x</em> + 0.75(50 - <em>x</em>) = 30
0.5<em>x</em> + 37.5 - 0.75<em>x</em> = 30
7.5 = 0.25<em>x</em>
<em>x</em> = 30 ==> <em>y</em> = 20