The length of a curve <em>C</em> parameterized by a vector function <em>r</em><em>(t)</em> = <em>x(t)</em> i + <em>y(t)</em> j over an interval <em>a</em> ≤ <em>t</em> ≤ <em>b</em> is

In this case, we have
<em>x(t)</em> = exp(<em>t</em> ) + exp(-<em>t</em> ) ==> d<em>x</em>/d<em>t</em> = exp(<em>t</em> ) - exp(-<em>t</em> )
<em>y(t)</em> = 5 - 2<em>t</em> ==> d<em>y</em>/d<em>t</em> = -2
and [<em>a</em>, <em>b</em>] = [0, 2]. The length of the curve is then





D as you can see on the number line d is 1/3 of the way to -2
Answer:
One is postive and the other is negative but both are integers and whole numbers
Step-by-step explanation:
3(x+5)=39
3 * x + 3 * 5 = 39
3x + 15 = 39
3x = 39 - 15
3x= 24
x = 8