Answer:
97.94 is 83% of 118
Step-by-step explanation:
Let the missing number be x
97.94=83% of x
I.e, 97.94=83/100 × x
97.94=83x/100
Cross multipy 97.94/1=83x/100
We have, 97.94 × 100 = 83x × 1
9794=83x
Divide both sides by 83 to make x the subject of the formula.
9794/83=83x/83
118=x
Part A. You have the correct first and second derivative.
---------------------------------------------------------------------
Part B. You'll need to be more specific. What I would do is show how the quantity (-2x+1)^4 is always nonnegative. This is because x^4 = (x^2)^2 is always nonnegative. So (-2x+1)^4 >= 0. The coefficient -10a is either positive or negative depending on the value of 'a'. If a > 0, then -10a is negative. Making h ' (x) negative. So in this case, h(x) is monotonically decreasing always. On the flip side, if a < 0, then h ' (x) is monotonically increasing as h ' (x) is positive.
-------------------------------------------------------------
Part C. What this is saying is basically "if we change 'a' and/or 'b', then the extrema will NOT change". So is that the case? Let's find out
To find the relative extrema, aka local extrema, we plug in h ' (x) = 0
h ' (x) = -10a(-2x+1)^4
0 = -10a(-2x+1)^4
so either
-10a = 0 or (-2x+1)^4 = 0
The first part is all we care about. Solving for 'a' gets us a = 0.
But there's a problem. It's clearly stated that 'a' is nonzero. So in any other case, the value of 'a' doesn't lead to altering the path in terms of finding the extrema. We'll focus on solving (-2x+1)^4 = 0 for x. Also, the parameter b is nowhere to be found in h ' (x) so that's out as well.
The numbers are: 36 and 11 .
______________________________________________
Explanation:
______________________________________________
Let us represent the TWO (2) numbers with the variables;
"x" and "y" .
__________________________________________
x + y = 47 .
y − x = 25.
__________________________________________
Since: " y − x = 25 " ;
Solve for "y" in terms of "x" ;
y − x = 25 ;
Add "x" to each side of the equation:
_____________________________________________
y − x + x = 25 + x ;
to get:
y = 25 + x .
Now, since:
x + y = 47 ;
Plug in "(25 + x)" as a substitution for "y"; to solve for "x" :
x + (25 + x) = 47 ;
x + 25 + x + 47 ;
2x + 25 = 47 ;
Subtract "25" from each side of the equation:
2x + 25 − 25 = 47 − 25 ;
2x = 22 ;
Divide EACH SIDE of the equation by "2" ;
to isolate "x" on one side of the equation; and to solve for "x" ;
2x / 2 = 22 / 2 ;
x = 11 ;
______________________________________________
x + y = 47<span> ;
</span>Plug in "11" for "x" into the equation ; to solve for "y" ;
11 + y = 47 ;
Subtract "11" from EACH SIDE of the equation;
to isolate "y" on one side of the equation; and to solve for "y" ;
11 + y − 11 = 47 − 11 ;
y = 36 .
___________________________________________
So: x = 11 , y = 36 ;
___________________________________________
Let us check our work:
y − x = 25 ;
36 − 11 =? 25 ? Yes!
x + y = 47 ;
36 + 11 =? 47 ? Yes!
______________________________________________
The numbers are: 36 and 11 .
______________________________________________
Answer: 0.0625
Step-by-step explanation:
0.25/4