Answer:
68.
Step-by-step explanation:
The common difference d = -19 - (-22) = 3
So the 31st term =
a31 = -22 + (31-1)3
= -22 + 90
= 90 - 22
= 68.
As is the case for any polynomial, the domain of this one is (-infinity, +infinity).
To find the range, we need to determine the minimum value that f(x) can have. The coefficients here are a=2, b=6 and c = 2,
The x-coordinate of the vertex is x = -b/(2a), which here is x = -6/4 = -3/2.
Evaluate the function at x = 3/2 to find the y-coordinate of the vertex, which is also the smallest value the function can take on. That happens to be y = -5/2, so the range is [-5/2, infinity).
Answer: 6x - 3 over x^3
Step-by-step explanation:
Answer:
9/10
Step-by-step explanation:
Answer: hello your question is poorly written below is the complete question
Let L be the set of all lines in XY plane and R be the relation in L defined as R = {(L1, L2): L1 is parallel to L2}. Show that R is an equivalence relation. Find the set of all lines related to the line y = 2x + 4.
answer:
a ) R is equivalence
b) y = 2x + C
Step-by-step explanation:
<u>a) Prove that R is an equivalence relation </u>
Every line is seen to be parallel to itself ( i.e. reflexive ) also
L1 is parallel to L2 and L2 is as well parallel to L1 ( i.e. symmetric ) also
If we presume L1 is parallel to L2 and L2 is also parallel to L3 hence we can also conclude that L1 is parallel to L3 as well ( i.e. transitive )
with these conditions we can conclude that ; R is equivalence
<u>b) show the set of all lines related to y = 2x + 4 </u>
The set of all line that is related to y = 2x + 4
y = 2x + C
because parallel lines have the same slopes.