12% = $42,655.12
.12x = 42655.12
---------------------
0.12 0.12
355,459.33 is the price of the house.
Answer:
$0 < p ≤ $25
Step-by-step explanation:
We know that coach Rivas can spend up to $750 on 30 swimsuits.
This means that the maximum cost that the coach can afford to pay is $750, then if the cost for the 30 swimsuits is C, we have the inequality:
C ≤ $750
Now, if each swimsuit costs p, then 30 of them costs 30 times p, then the cost of the swimsuits is:
C = 30*p
Then we have the inequality:
30*p ≤ $750.
To find the possible values of p, we just need to isolate p in one side of the inequality.
So we can divide both sides by 30 to get:
(30*p)/30 ≤ $750/30
p ≤ $25
And we also should add the restriction:
$0 < p ≤ $25
Because a swimsuit can not cost 0 dollars or less than that.
Then the inequality that represents the possible values of p is:
$0 < p ≤ $25
Answer:
wergeyhrfed
Step-by-step explanation:
This is system of Equations.
<span>2x + 3y =10
x + y = 3
</span>
x + y = 3 (multiply this by three) to get 3x + 3y = 9
2x + 3y =10
3x + 3y = 9 Subtract them
-1x = 1
x=-1
Now plug x back into the top equation and solve for y.
I hope this helps! If not, let me know! Have a fantastical day!
Well, we can denote L and W for the length and width respectively. Lets say the A is the area, we have: 1. A=(L × W) as well as 2. 2(L+W)=400. We rearrange the second equation to get 3. W=200-L. From this, we can see that 0<L<200. Substitute the third equation into the first to get A=(200L-L²). put this formula into the scientific calculator and you will find a parabola with a maximum. That would be the maximum area of the enclosed area. Alternatively, we can say that L is between 0 and 200 when the area equals 0. (The graph you find will be area against length). As the maximum is generally found halfway, we substitute 100 into the equation and we end up with 10000.
Hope this helps.