Answer:
a. p = the population proportion of UF students who would support making the Tuesday before Thanksgiving break a holiday.
Step-by-step explanation:
For each student, there are only two possible outcomes. Either they are in favor of making the Tuesday before Thanksgiving a holiday, or they are against. This means that we can solve this problem using concepts of the binomial probability distribution.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

In which
is the number of different combinatios of x objects from a set of n elements, given by the following formula.

And p is the probability of X happening.
So, the binomial probability distribution has two parameters, n and p.
In this problem, we have that
and
. So the parameter is
a. p = the population proportion of UF students who would support making the Tuesday before Thanksgiving break a holiday.
Answer:
4x+13
Step-by-step explanation:
combine like terms -2x and 6x to get 4 then combine 9 and 4 to get 13
4/8 and 3/6. Both of these z= 1/2
$354 divided by 12 equal payments equals $29.50 a payment