1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lara [203]
3 years ago
11

24-4x=15-3x10-x has how many solutions

Mathematics
1 answer:
Igoryamba3 years ago
6 0
Your answer will be -1
You might be interested in
What multiplication problem equals 130
love history [14]
26*5 130 divided by 6=5
7 0
3 years ago
Find each product mentally. show the steps you used.7 × 2.9
JulijaS [17]
Answer is 20.3 and the steps are:
1.) 7 x 9 = 63 move the six over the 2 leave the 3 down
2.) 7 x 2 = 14
3.) 14 + 6 = 20
4.) you have 203 but must bring the decimal down and it makes it: 20.3
I hope I helped and if you're confused please ask questions
6 0
3 years ago
This is a 10 point question i need help
Bess [88]
It’s B because they both equal each other I would explain more but I’m in class but the answer is definitely B
4 0
3 years ago
The graph of quadratic function p is shown on the grid. (-3, 3) (3, 3) If (x) = x and p(x) = 5(x) + n, what is the value of n?​
aliina [53]

Answer:

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
You have a large jar that initially contains 30 red marbles and 20 blue marbles. We also have a large supply of extra marbles of
Dima020 [189]

Answer:

There is a 57.68% probability that this last marble is red.

There is a 20.78% probability that we actually drew the same marble all four times.

Step-by-step explanation:

Initially, there are 50 marbles, of which:

30 are red

20 are blue

Any time a red marble is drawn:

The marble is placed back, and another three red marbles are added

Any time a blue marble is drawn

The marble is placed back, and another five blue marbles are added.

The first three marbles can have the following combinations:

R - R - R

R - R - B

R - B - R

R - B - B

B - R - R

B - R - B

B - B - R

B - B - B

Now, for each case, we have to find the probability that the last marble is red. So

P = P_{1} + P_{2} + P_{3} + P_{4} + P_{5} + P_{6} + P_{7} + P_{8}

P_{1} is the probability that we go R - R - R - R

There are 50 marbles, of which 30 are red. So, the probability of the first marble sorted being red is \frac{30}{50} = \frac{3}{5}.

Now the red marble is returned to the bag, and another 3 red marbles are added.

Now there are 53 marbles, of which 33 are red. So, when the first marble sorted is red, the probability that the second is also red is \frac{33}{53}

Again, the red marble is returned to the bag, and another 3 red marbles are added

Now there are 56 marbles, of which 36 are red. So, in this sequence, the probability of the third marble sorted being red is \frac{36}{56}

Again, the red marble sorted is returned, and another 3 are added.

Now there are 59 marbles, of which 39 are red. So, in this sequence, the probability of the fourth marble sorted being red is \frac{39}{59}. So

P_{1} = \frac{3}{5}*\frac{33}{53}*\frac{36}{56}*\frac{39}{59} = \frac{138996}{875560} = 0.1588

P_{2} is the probability that we go R - R - B - R

P_{2} = \frac{3}{5}*\frac{33}{53}*\frac{20}{56}*\frac{36}{61} = \frac{71280}{905240} = 0.0788

P_{3} is the probability that we go R - B - R - R

P_{3} = \frac{3}{5}*\frac{20}{53}*\frac{33}{58}*\frac{36}{61} = \frac{71280}{937570} = 0.076

P_{4} is the probability that we go R - B - B - R

P_{4} = \frac{3}{5}*\frac{20}{53}*\frac{25}{58}*\frac{33}{63} = \frac{49500}{968310} = 0.0511

P_{5} is the probability that we go B - R - R - R

P_{5} = \frac{2}{5}*\frac{30}{55}*\frac{33}{58}*\frac{36}{61} = \frac{71280}{972950} = 0.0733

P_{6} is the probability that we go B - R - B - R

P_{6} = \frac{2}{5}*\frac{30}{55}*\frac{25}{58}*\frac{33}{63} = \frac{49500}{1004850} = 0.0493

P_{7} is the probability that we go B - B - R - R

P_{7} = \frac{2}{5}*\frac{25}{55}*\frac{1}{2}*\frac{33}{63} = \frac{825}{17325} = 0.0476

P_{8} is the probability that we go B - B - B - R

P_{8} = \frac{2}{5}*\frac{25}{55}*\frac{1}{2}*\frac{30}{65} = \frac{750}{17875} = 0.0419

So, the probability that this last marble is red is:

P = P_{1} + P_{2} + P_{3} + P_{4} + P_{5} + P_{6} + P_{7} + P_{8} = 0.1588 + 0.0788 + 0.076 + 0.0511 + 0.0733 + 0.0493 + 0.0476 + 0.0419 = 0.5768

There is a 57.68% probability that this last marble is red.

What's the probability that we actually drew the same marble all four times?

P = P_{1} + P_{2}

P_{1} is the probability that we go R-R-R-R. It is the same P_{1} from the previous item(the last marble being red). So P_{1} = 0.1588

P_{2} is the probability that we go B-B-B-B. It is almost the same as P_{8} in the previous exercise. The lone difference is that for the last marble we want it to be blue. There are 65 marbles, 35 of which are blue.

P_{2} = \frac{2}{5}*\frac{25}{55}*\frac{1}{2}*\frac{35}{65} = \frac{875}{17875} = 0.0490

P = P_{1} + P_{2} = 0.1588 + 0.0490 = 0.2078

There is a 20.78% probability that we actually drew the same marble all four times

3 0
3 years ago
Other questions:
  • Devin has a new cell phone that holds 1.5 gigabytes of memory for music. He already used 1.35 gigabytes of memory. Will he have
    14·2 answers
  • Simplify this expression : 2(y+z)
    14·2 answers
  • (Radioactivity) The half-life of radioactive cobalt is 5.3 years. After a nuclear reactor accident, the surrounding region had 1
    15·1 answer
  • Solve for x 3x+wx=20
    8·1 answer
  • Roman and Ranjan each divided 3.56 by 0.72. Roman got 4.94 for his quotient. Which student divided correctly? How do you know? E
    11·1 answer
  • What is 4•(5+3)=4•8=
    5·2 answers
  • PLEASE HELP :(((( <br> I posted 2 times no one answers me. <br> BRAINIEST
    12·2 answers
  • I need help with 15,16,17 please and thank you
    10·1 answer
  • Y'ALL, WOULD A KIND SOUL PLEASE PLEASE HELP ME???!!!!!!!!!!! im running out of points
    14·1 answer
  • Will give bainlyest!
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!