The hang time of the ball is 4.08 s
Explanation:
The ball is in free fall motion: this means that it is acted upon gravity only, so its acceleration is the acceleration of gravity,

downward (the negative sign refers to the downward direction).
Since this is a uniformly accelerated motion, we can solve the problem by using the following suvat equation:

where
v is the final velocity
u is the initial velocity
a is the acceleration
t is the time
First we calculate the time it takes for the ball to reach the maximum height, where the velocity is zero:
v = 0
Substituting:
u = +20 m/s

we find t

The motion of the ball is symmetrical, so the total time of flight is just twice the time needed to reach the maximum height, therefore:

Learn more about free fall:
brainly.com/question/1748290
brainly.com/question/11042118
brainly.com/question/2455974
brainly.com/question/2607086
#LearnwithBrainly
Answer:
M = 6.32 x 10⁻⁶ H
Explanation:
given,
Length of solenoid = 10 cm = 0.1 m
diameter = 0.40 cm
radius = 0.2 cm = 0.002
number of turns, N₁ = 800
N₂ = 50
mutual inductance will be equal to


M = 6.32 x 10⁻⁶ H
hence, mutual inductance of the combination of two coil is equal to M = 6.32 x 10⁻⁶ H
Answer:
A) 100°C
B) 211 g
Explanation:
Heat released by red hot iron to cool to 100°C = 130 x .45 x 645 [ specific heat of iron is .45 J /g/K]
= 37732.5 J
heat required by water to heat up to 100 °C = 85 x 4.2 x 80 = 28560 J
As this heat is less than the heat supplied by iron so equilibrium temperature will be 100 ° C. Let m g of water is vaporized in the process . Heat required for vaporization = m x 540x4.2 = 2268m J
Heat required to warm the water of 85 g to 100 °C = 85X4.2 X 80 = 28560 J
heat lost = heat gained
37732.5 = 28560 + 2268m
m = 4 g.
So 4 g of water will be vaporized and remaining 81 g of water and 130 g of iron that is total of 211 g will be in the cup . final temp of water will be 100 °C.
<u>Answer:</u> The charge on each plates is
.
<u>Explanation:</u>
The magnitude of charge that flows through the plates is directly dependent on the capacitance and the voltage flowing through the plates.
Mathematically,

where,
Q = charge flowing = ? C
C = capacitance =
(Conversion Factor:
)
V = Voltage across the plates = 12 V
Putting values in above equation, we get:

Hence, the charge on each plates is
.