Answer:
a) 3673469.39 seconds
b) 6.61×10¹⁴ m
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity = 0.12×3×10⁸ m/s
s = Displacement
a = Acceleration due to gravity = 9.8 m/s²
Equation of motion

Time taken to reach 12% of light speed is 3673469.39 seconds

The distance it would have to travel is 6.61×10¹⁴ m
Answer:
241.7 s
Explanation:
We are given that
Charge of particle=
Kinetic energy of particle=
Initial time=
Final potential difference=
We have to find the time t after that the particle is released and traveled through a potential difference 0.351 V.
We know that

Using the formula


Initial voltage=

Using the formula





Hence, after 241.7 s the particle is released has it traveled through a potential difference of 0.351 V.
Answer:
Part a)

Part b)

Part c)

Part d)

Explanation:
Part a)
While bucket is falling downwards we have force equation of the bucket given as

for uniform cylinder we will have

so we have


now we have




now we have


Part b)
speed of the bucket can be found using kinematics
so we have



Part c)
now in order to find the time of fall we can use another equation



Part d)
as we know that cylinder is at rest and not moving downwards
so here we can use force balance



Answer: Constructive interference
Explanation: Just took the test
Answer:
The kinetic energy of the anti proton is 147.4 MeV.
Explanation:
Given that,
Energy = 2.12 GeV
Kinetic energy = 96.0 MeV
We need to calculate the kinetic energy of the anti proton
Using formula of energy

We know that,

So, 

Put the value into the formula


Hence, The kinetic energy of the anti proton is 147.4 MeV.