The value of x<em> </em>in the polynomial fraction 3/((x-4)•(x-7)) + 6/((x-7)•(x-13)) + 15/((x-13)•(x-28)) - 1/(x-28) = -1/20 is <em>x </em>= 24
<h3>How can the polynomial with fractions be simplified to find<em> </em><em>x</em>?</h3>
The given equation is presented as follows;

Factoring the common denominator, we have;

Simplifying the numerator of the right hand side using a graphing calculator, we get;
By expanding and collecting, the terms of the numerator gives;
-(x³ - 48•x + 651•x - 2548)
Given that the terms of the numerator have several factors in common, we get;
-(x³ - 48•x + 651•x - 2548) = -(x-7)•(x-28)•(x-13)
Which gives;

Which gives;

x - 4 = 20
Therefore;
Learn more about polynomials with fractions here:
brainly.com/question/12262414
#SPJ1
The answer is 325, 20 + 205 + 100 = 325
It think the answer would be and 9 and 5
Answer:
m=-44
Explanation: distribute the negative and add -1/4 to m and then take the 5 away from 16 and then multiply both sides
Answer:
(a) The probability of the event (<em>X</em> > 84) is 0.007.
(b) The probability of the event (<em>X</em> < 64) is 0.483.
Step-by-step explanation:
The random variable <em>X</em> follows a Poisson distribution with parameter <em>λ</em> = 64.
The probability mass function of a Poisson distribution is:

(a)
Compute the probability of the event (<em>X</em> > 84) as follows:
P (X > 84) = 1 - P (X ≤ 84)
![=1-\sum _{x=0}^{x=84}\frac{e^{-64}(64)^{x}}{x!}\\=1-[e^{-64}\sum _{x=0}^{x=84}\frac{(64)^{x}}{x!}]\\=1-[e^{-64}[\frac{(64)^{0}}{0!}+\frac{(64)^{1}}{1!}+\frac{(64)^{2}}{2!}+...+\frac{(64)^{84}}{84!}]]\\=1-0.99308\\=0.00692\\\approx0.007](https://tex.z-dn.net/?f=%3D1-%5Csum%20_%7Bx%3D0%7D%5E%7Bx%3D84%7D%5Cfrac%7Be%5E%7B-64%7D%2864%29%5E%7Bx%7D%7D%7Bx%21%7D%5C%5C%3D1-%5Be%5E%7B-64%7D%5Csum%20_%7Bx%3D0%7D%5E%7Bx%3D84%7D%5Cfrac%7B%2864%29%5E%7Bx%7D%7D%7Bx%21%7D%5D%5C%5C%3D1-%5Be%5E%7B-64%7D%5B%5Cfrac%7B%2864%29%5E%7B0%7D%7D%7B0%21%7D%2B%5Cfrac%7B%2864%29%5E%7B1%7D%7D%7B1%21%7D%2B%5Cfrac%7B%2864%29%5E%7B2%7D%7D%7B2%21%7D%2B...%2B%5Cfrac%7B%2864%29%5E%7B84%7D%7D%7B84%21%7D%5D%5D%5C%5C%3D1-0.99308%5C%5C%3D0.00692%5C%5C%5Capprox0.007)
Thus, the probability of the event (<em>X</em> > 84) is 0.007.
(b)
Compute the probability of the event (<em>X</em> < 64) as follows:
P (X < 64) = P (X = 0) + P (X = 1) + P (X = 2) + ... + P (X = 63)
![=\sum _{x=0}^{x=63}\frac{e^{-64}(64)^{x}}{x!}\\=e^{-64}\sum _{x=0}^{x=63}\frac{(64)^{x}}{x!}\\=e^{-64}[\frac{(64)^{0}}{0!}+\frac{(64)^{1}}{1!}+\frac{(64)^{2}}{2!}+...+\frac{(64)^{63}}{63!}]\\=0.48338\\\approx0.483](https://tex.z-dn.net/?f=%3D%5Csum%20_%7Bx%3D0%7D%5E%7Bx%3D63%7D%5Cfrac%7Be%5E%7B-64%7D%2864%29%5E%7Bx%7D%7D%7Bx%21%7D%5C%5C%3De%5E%7B-64%7D%5Csum%20_%7Bx%3D0%7D%5E%7Bx%3D63%7D%5Cfrac%7B%2864%29%5E%7Bx%7D%7D%7Bx%21%7D%5C%5C%3De%5E%7B-64%7D%5B%5Cfrac%7B%2864%29%5E%7B0%7D%7D%7B0%21%7D%2B%5Cfrac%7B%2864%29%5E%7B1%7D%7D%7B1%21%7D%2B%5Cfrac%7B%2864%29%5E%7B2%7D%7D%7B2%21%7D%2B...%2B%5Cfrac%7B%2864%29%5E%7B63%7D%7D%7B63%21%7D%5D%5C%5C%3D0.48338%5C%5C%5Capprox0.483)
Thus, the probability of the event (<em>X</em> < 64) is 0.483.