I think the answer is D) 24/25.
Again sorry if its wrong!!
The equation of the tangent line at x=1 can be written in point-slope form as
... L(x) = f'(1)(x -1) +f(1)
The derivative is ...
... f'(x) = 4x^3 +4x
so the slope of the tangent line is f'(1) = 4+4 = 8.
The value of the function at x=1 is
... f(1) = 1^4 +2·1^2 = 3
So, your linearization is ...
... L(x) = 8(x -1) +3
or
... L(x) = 8x -5
7th grade: 62/120 of the class is made up of girls; (120-62)/120 of boys.
8th grade: 58/120 of the class is made up of boys; (120-58)/120 of girls.
Looking at the info for boys only: Compare (120-62)/120 with 58/120. What do you see?
Answer:
The domain and range remain the same.
Step-by-step explanation:
Hi there!
First, we must determine what increasing <em>a</em> by 2 really does to the exponential function.
In f(x)=ab^x, <em>a</em> represents the initial value (y-intercept) of the function while <em>b</em> represents the common ratio for each consecutive value of f(x).
Increasing <em>a</em> by 2 means moving the y-intercept of the function up by 2. If the original function contained the point (0,x), the new function would contain the point (0,x+2).
The domain remains the same; it is still the set of all real x-values. This is true for any exponential function, regardless of any transformations.
The range remains the same as well; for the original function, it would have been
. Because increasing <em>a</em> by 2 does not move the entire function up or down, the range remains the same.
I hope this helps!