A) zeroes
P(n) = -250 n^2 + 2500n - 5250
Extract common factor:
P(n)= -250 (n^2 - 10n + 21)
Factor (find two numbers that sum -10 and its product is 21)
P(n) = -250(n - 3)(n - 7)
Zeroes ==> n - 3 = 0 or n -7 = 0
Then n = 3 and n = 7 are the zeros.
They rerpesent that if the promoter sells tickets at 3 or 7 dollars the profit is zero.
B) Maximum profit
Completion of squares
n^2 - 10n + 21 = n^2 - 10n + 25 - 4 = (n^2 - 10n+ 25) - 4 = (n - 5)^2 - 4
P(n) = - 250[(n-5)^2 -4] = -250(n-5)^2 + 1000
Maximum ==> - 250 (n - 5)^2 = 0 ==> n = 5 and P(5) = 1000
Maximum profit =1000 at n = 5
C) Axis of symmetry
Vertex = (h,k) when the equation is in the form A(n-h)^2 + k
Comparing A(n-h)^2 + k with - 250(n - 5)^2 + 1000
Vertex = (5, 1000) and the symmetry axis is n = 5.
Answer:
I don't know what you're answer is supposed to look like but if you're creating an equation it should be this...
Step-by-step explanation:
( 4 · √x ) - ( 8 · √x )
Area=legnth times width
so multiply them together use distributive property
a(b+c)=ab+ac so
in this problem
(a+b)(c+d+e)=(a+b)(c)+(a+b)(d)+(a+b)(e)
so
x^2-2 times (2x^2-x+2)=(x^2)(2x^2-x+2)-(2)(2x^2-x+2)=(2x^4-x^3+2x^2)-(4x^2-2x+4)
add like terms
2x^4-x^3+(2x^2-4x^2)-2x+4
2x^4-x^3-2x^2-2x+4
Answer:
30
Step-by-step explanation: