1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
insens350 [35]
3 years ago
9

Translation rotation reflection

Mathematics
2 answers:
Debora [2.8K]3 years ago
7 0
NdmLfidkanxlcuwhdhfosof
Akimi4 [234]3 years ago
3 0

Answer:

?

Step-by-step explanation:

You might be interested in
Robyn opened a bank account to save her birthday money. it was paying 3.75% interest. then the interest rate went up by 0.65%. h
Savatey [412]
Her new interest rate would be 4.40%
8 0
3 years ago
Read 2 more answers
Which statement is true?
Vlada [557]
I think a but not sure
7 0
3 years ago
Read 2 more answers
Please help me on this and dont play around
katrin [286]

Answer:

ummmm 90% sure its 13/10.......?

Step-by-step explanation:

:/

4 0
3 years ago
(20x18)x5 find the total income
nydimaria [60]
The awnser is 1,800.
8 0
3 years ago
Read 2 more answers
Unit Activity: Geometric Transformations and Congruence
Llana [10]
Task 1: criteria for congruent triangles

a. 
(SSA) is not a valid mean for establishing triangle congruence. In this case we know  <span>the measure of two adjacent sides and the angle opposite to one of them. Since we don't know anything about the measure of the third side, the second side of the triangle can intercept the third side in more than one way, so the third side can has more than one length; therefore, the triangles may or may not be congruent. In our example (picture 1) we have a triangle with tow congruent adjacent sides: AC is congruent to DF and CB is congruent to FE, and a congruent adjacent angle: </span>∠CAB is congruent to <span>∠FDE, yet triangles ABC and DEF are not congruent. 

b. </span><span>(AAA) is not a valid mean for establishing triangle congruence. In this case we know the measures of the three interior sides of the triangles. Since the measure of the angles don't affect the lengths of the sides, we can have tow triangles with 3 congruent angles and three different sides. In our example (picture 2) the three angles of triangle ABC and triangle DEF are congruent, yet the length of their sides are different.
</span>
c. <span>(SAA) is a valid means for establishing triangle congruence. In this case we know </span>the measure of a side, an adjacent angle, and the angle opposite to the side; in other words we have the measures of two angles and the measure of the non-included side, which is the AAS postulate. Remember that the AAS postulate states that if two angles and the non-included side of one triangle are congruent to two angles and the non-included side of another triangle, then these two triangles are congruent. Since SAA = AAS, we can conclude that SAA is a valid mean for establishing triangle congruence.

Task 2: geometric constructions

a. Step 1. Take a point A and point B, so AB is the radius of the circle; draw a circle at center A and radius AB.
Step 2. Draw another circle with radius AB but this time with center at B.
Step 3. Mark the two points, C and D, of intersection of both circles. 
Step 4. Use the points C and D to mark a point E in the circle with center at A.
Step 5. Join the points C, D, and E to create the equilateral triangle CDE inscribed in the circle with center at A (picture 3).

b. Step 1. take a point A and point B, so AB is the radius of the circle; draw a circle at center A and radius AB.
Step 2. The point B is the first vertex of the inscribed square.
Step 3. Draw a diameter from point B to point C.
Step 4. Set a radius form point B to point D passing trough A, and draw a circle.
Step 5. Use the same radius form point C to point E using the same measure of the radius BD from the previous step. 
Step 6. Draw a line FG trough were the two circles cross passing trough point A.
Step 7. Join the points B, F, C, and G, to create the inscribed square BFCG (picture 4).

c. Step 1. take a point A and point B, so AB is the radius of the circle; draw a circle at center A and radius AB.
Step 2. Draw the diameter of the circle BC.
Step 3. Use radius AB to create another circle with center at C.
Step 4. Use radius AB to create another circle with center at B.
Step 5. Mark the points D, E, F, and G where two circles cross.
Step 6. Join the points C, D, E, B, F, and G to create the inscribed regular hexagon (picture 5).





5 0
3 years ago
Other questions:
  • Number 18 idk what to do help plz and fast
    11·1 answer
  • X^2+(x-8)^2-3(x+2) = 2(x+9)
    13·1 answer
  • Write y=-3/4x+3 in standard form using integers
    10·1 answer
  • Which of the following is a complex number?
    14·1 answer
  • What is the awnser to the circled equations?​
    15·1 answer
  • Which is the best estimate of 90/7 divided by 1 3/4?
    11·1 answer
  • WILL GIVE BRAINLIEST!!<br> only if you explain ur answer
    11·1 answer
  • The height H of a skydiver t seconds after jumping. Let T be the independent variable, and assume the skydiver jumps from a heig
    6·1 answer
  • Please helppp meee I don’t know the answer
    10·2 answers
  • PLEASE HELP!!!
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!