First one
market risk
:))
hope it helped
correct me if i’m wrong
Answer:
- The sequence of transformations that maps triangle XYZ onto triangle X"Y"Z" is <u>translation 5 units to the left, followed by translation 1 unit down, and relfection accross the x-axis</u>.
Explanation:
By inspection (watching the figure), you can tell that to transform the triangle XY onto triangle X"Y"Z", you must slide the former 5 units to the left, 1 unit down, and, finally, reflect it across the x-axys.
You can check that analitically
Departing from the triangle: XYZ
- <u>Translation 5 units to the left</u>: (x,y) → (x - 5, y)
- Vertex X: (-6,2) → (-6 - 5, 2) = (-11,2)
- Vertex Y: (-4, 7) → (-4 - 5, 7) = (-9,7)
- Vertex Z: (-2, 2) → (-2 -5, 2) = (-7, 2)
- <u>Translation 1 unit down</u>: (x,y) → (x, y-1)
- (-11,2) → (-11, 2 - 1) = (-11, 1)
- (-9,7) → (-9, 7 - 1) = (-9, 6)
- (-7, 2) → (-7, 2 - 1) = (-7, 1)
- <u>Reflextion accross the x-axis</u>: (x,y) → (x, -y)
- (-11, 1) → (-11, -1), which are the coordinates of vertex X"
- (-9, 6) → (-9, -6), which are the coordinates of vertex Y""
- (-7, 1) → (-7, -1), which are the coordinates of vertex Z"
Thus, in conclusion, it is proved that the sequence of transformations that maps triangle XYZ onto triangle X"Y"Z" is translation 5 units to the left, followed by translation 1 unit down, and relfection accross the x-axis.
Answer:
The inequality that can be used to determine how many rides r and games g Tyler can pay for at the carnival is:
0.75r+0.50g≤20, where:
r is the number of rides
g is the number of games
Step-by-step explanation:
With the information provided, you can say that the amount spent at the carnival is equal to the cost per ride for the number of rides plus the cost per game for the number of games. Also, given that the statement indicates that Tyler has at most $20, the inequality would indicate that the amount spent has to be less than or equal to 20. According to this, the inequality that can be used to determine how many rides r and games g Tyler can pay for at the carnival is:
0.75r+0.50g≤20, where:
r is the number of rides
g is the number of games