Use the given values in the compound interest formula to solve for time, n.
A is the final amount of money, $2800
P is the initial or starting amount $1900
i is the interest rate as a decimal 0.025
n is time in years since it annual.
2800 = 1900(1 + 0.025)^n
2800 = 1900(1.025)^n
2800/1900 = (1.025)^n
28/19 = (1.025)^n
take the natural log of both sides to solve for exponent.
ln(28/19) = ln(1.025^n)
power rule of logarithmic moves exponent
ln(28/19) = n*ln(1.025)
ln(28/19) / ln(1.025) = n
put into a calculator
15.7 years = n
Answer:
(E) 0.71
Step-by-step explanation:
Let's call A the event that a student has GPA of 3.5 or better, A' the event that a student has GPA lower than 3.5, B the event that a student is enrolled in at least one AP class and B' the event that a student is not taking any AP class.
So, the probability that the student has a GPA lower than 3.5 and is not taking any AP classes is calculated as:
P(A'∩B') = 1 - P(A∪B)
it means that the students that have a GPA lower than 3.5 and are not taking any AP classes are the complement of the students that have a GPA of 3.5 of better or are enrolled in at least one AP class.
Therefore, P(A∪B) is equal to:
P(A∪B) = P(A) + P(B) - P(A∩B)
Where the probability P(A) that a student has GPA of 3.5 or better is 0.25, the probability P(B) that a student is enrolled in at least one AP class is 0.16 and the probability P(A∩B) that a student has a GPA of 3.5 or better and is enrolled in at least one AP class is 0.12
So, P(A∪B) is equal to:
P(A∪B) = P(A) + P(B) - P(A∩B)
P(A∪B) = 0.25 + 0.16 - 0.12
P(A∪B) = 0.29
Finally, P(A'∩B') is equal to:
P(A'∩B') = 1 - P(A∪B)
P(A'∩B') = 1 - 0.29
P(A'∩B') = 0.71
Answer:
29500
Step-by-step explanation:
subtract the two numbers
Domain is x values... Y is y values