Answer:
Divide 35/40 = 87.5%
Step-by-step explanation:
I would help but I'm not sure what you are asking for us to do
Answer:

Step-by-step explanation:
You know how subtraction is the <em>opposite of addition </em>and division is the <em>opposite of multiplication</em>? A logarithm is the <em>opposite of an exponent</em>. You know how you can rewrite the equation 3 + 2 = 5 as 5 - 3 = 2, or the equation 3 × 2 = 6 as 6 ÷ 3 = 2? This is really useful when one of those numbers on the left is unknown. 3 + _ = 8 can be rewritten as 8 - 3 = _, 4 × _ = 12 can be rewritten as 12 ÷ 4 = _. We get all our knowns on one side and our unknown by itself on the other, and the rest is computation.
We know that
; as a logarithm, the <em>exponent</em> gets moved to its own side of the equation, and we write the equation like this:
, which you read as "the logarithm base 3 of 9 is 2." You could also read it as "the power you need to raise 3 to to get 9 is 2."
One historical quirk: because we use the decimal system, it's assumed that an expression like
uses <em>base 10</em>, and you'd interpret it as "What power do I raise 10 to to get 1000?"
The expression
means "the power you need to raise 10 to to get 100 is x," or, rearranging: "10 to the x is equal to 100," which in symbols is
.
(If we wanted to, we could also solve this:
, so
)
Answer:
a.) f(x) =
where 90 < x < 120
b.) 
c.) 
d.) 
Step-by-step explanation:
Let
X be a uniform random variable that denotes the actual charging time of battery.
Given that, the actual recharging time required is uniformly distributed between 90 and 120 minutes.
⇒X ≈ ∪ ( 90, 120 )
a.)
Probability density function , f (x) =
where 90 < x < 120
b.)
P(x < 110) = 
= ![\frac{1}{30}[x]\limits^{110}_{90} = \frac{1}{30} [ 110 - 90 ] = \frac{1}{30} [ 20] = \frac{2}{3}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B30%7D%5Bx%5D%5Climits%5E%7B110%7D_%7B90%7D%20%20%3D%20%5Cfrac%7B1%7D%7B30%7D%20%5B%20110%20-%2090%20%5D%20%3D%20%5Cfrac%7B1%7D%7B30%7D%20%5B%2020%5D%20%3D%20%5Cfrac%7B2%7D%7B3%7D)
c.)
P(x > 100 ) = 
= ![\frac{1}{30}[x]\limits^{120}_{100} = \frac{1}{30} [ 120 - 100 ] = \frac{1}{30} [ 20] = \frac{2}{3}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B30%7D%5Bx%5D%5Climits%5E%7B120%7D_%7B100%7D%20%20%3D%20%5Cfrac%7B1%7D%7B30%7D%20%5B%20120%20-%20100%20%5D%20%3D%20%5Cfrac%7B1%7D%7B30%7D%20%5B%2020%5D%20%3D%20%5Cfrac%7B2%7D%7B3%7D)
d.)
P(95 < x< 110) = 
= ![\frac{1}{30}[x]\limits^{110}_{95} = \frac{1}{30} [ 110 - 95 ] = \frac{1}{30} [ 15] = \frac{1}{2}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B30%7D%5Bx%5D%5Climits%5E%7B110%7D_%7B95%7D%20%20%3D%20%5Cfrac%7B1%7D%7B30%7D%20%5B%20110%20-%2095%20%5D%20%3D%20%5Cfrac%7B1%7D%7B30%7D%20%5B%2015%5D%20%3D%20%5Cfrac%7B1%7D%7B2%7D)