The answer will be
15m+10
Answer:
a. a[1] = 3; a[n] = 2a[n-1]
b. a[n] = 3·2^(n-1)
c. a[15] = 49,152
Step-by-step explanation:
Each term of the given sequence is 2 times the previous term. (This description is the basis of the recursive formula.) That is, the terms of the given sequence have a common ratio of 2. This means the sequence is geometric, so the formulas for explicit and recursive rules for a geometric sequence apply.
The first term is 3, and the common ratio is 2.
<h3>(a)</h3>
The recursive rule is ...
a[1] = 3
a[n] = 2×a[n-1]
__
<h3>(b)</h3>
The explicit rule is ...
a[n] = a[1]×r^(n-1)
a[n] = 3×2^(n-1)
__
<h3>(c)</h3>
The 15th term is ...
a[15] = 3×2^(15-1) = 3×2^14
a[15] = 49,152
Keisha is correct, because as per the definition <u>A function is a special relationship where each input has a single output</u>.
A function is a special relation. In other words, a relation if and only if it has a specific characteristic where each input has a single output, then it is called a Function.
All functions are relations but not all relations are functions.
Answer:
lower than Amanda: 816 students
Step-by-step explanation:
An equivalent way in which to state this problem is: Find the area under the standard normal curve to the left (below) 940.
Most modern calculators have built in distribution functions.
In this case I entered the single command normalcdf(-1000,940, 850, 100)
and obtained 0.816.
In this particular situation, this means that 0.816(1000 students) scored lower than Amanda: 816 students.