1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Wewaii [24]
2 years ago
8

Simplify (-8y^2+6y-1)+(-8y^2+8y+1)(-3y^2+9y-9)

Mathematics
1 answer:
KonstantinChe [14]2 years ago
7 0

Answer:

24y^4-96y^3+133y^2-57y-10

Step-by-step explanation:

Given expression

(-8y^2+6y-1)+(-8y^2+8y+1)(-3y^2+9y-9)

First, multiply two polynomials in brackets:

(-8y^2+8y+1)(-3y^2+9y-9)\\ \\=24y^4-72y^3+72y^2-24y^3+72y^2-72y-3y^2+9y-9\\ \\=24y^4-96y^3+141y^2-63y-9

No add two polynomials:

-8y^2+6y-1+24y^4-96y^3+141y^2-63y-9\\ \\=24y^4-96y^3+133y^2-57y-10

You might be interested in
I need help with this proof
Maksim231197 [3]

Answer:

See explanation

Step-by-step explanation:

Consider two triangles ABF and EDF. These triangles are two right triangles, because angles B and D are right anges.

In these triangles,

  • ∠ABF ≅ ∠EDF - as two right angles;
  • BF ≅ FE - given;
  • ∠AFB ≅ ∠EFD - as vertical angles when two lines AD and BE itersect.

By ASA postulate (or HA postulate) these triangles are congruent, so

ΔABF ≅ ΔEDF

Congruent triangles have congruent corresponding parts, so

FA ≅ EF

6 0
3 years ago
2〖sen〗^2 x+3 senx+1=0
KonstantinChe [14]

2 sin²(<em>x</em>) + 3 sin(<em>x</em>) + 1 = 0

(2 sin(<em>x</em>) + 1) (sin(<em>x</em>) + 1) = 0

2 sin(<em>x</em>) + 1 = 0   OR   sin(<em>x</em>) + 1 = 0

sin(<em>x</em>) = -1/2   OR   sin(<em>x</em>) = -1

The first equation gives two solution sets,

<em>x</em> = sin⁻¹(-1/2) + 2<em>nπ</em> = -<em>π</em>/6 + 2<em>nπ</em>

<em>x</em> = <em>π</em> - sin⁻¹(-1/2) + 2<em>nπ</em> = 5<em>π</em>/6 + 2<em>nπ</em>

(where <em>n</em> is any integer), while the second equation gives

<em>x</em> = sin⁻¹(-1) + 2<em>nπ</em> = -<em>π</em>/2 + 2<em>nπ</em>

2 cot(<em>x</em>) sec(<em>x</em>) + 2 sec(<em>x</em>) + cot(<em>x</em>) + 1 = 0

2 sec(<em>x</em>) (cot(<em>x</em>) + 1) + cot(<em>x</em>) + 1 = 0

(2 sec(<em>x</em>) + 1) (cot(<em>x</em>) + 1) = 0

2 sec(<em>x</em>) + 1 = 0   OR   cot(<em>x</em>) + 1 = 0

sec(<em>x</em>) = -1/2   OR   cot(<em>x</em>) = -1

cos(<em>x</em>) = -2   OR   tan(<em>x</em>) = -1

The first equation has no (real) solutions, since -1 ≤ cos(<em>x</em>) ≤ 1 for all (real) <em>x</em>. The second equation gives

<em>x</em> = tan⁻¹(-1) + <em>nπ</em> = -<em>π</em>/4 + <em>nπ</em>

<em />

sin(<em>x</em>) cos²(<em>x</em>) = sin(<em>x</em>)

sin(<em>x</em>) cos²(<em>x</em>) - sin(<em>x</em>) = 0

sin(<em>x</em>) (cos²(<em>x</em>) - 1) = 0

sin(<em>x</em>) (-sin²(<em>x</em>)) = 0

sin³(<em>x</em>) = 0

sin(<em>x</em>) = 0

<em>x</em> = sin⁻¹(0) + 2<em>nπ</em> = 2<em>nπ</em>

<em />

2 cos²(<em>x</em>) + 2 sin(<em>x</em>) - 12 = 0

2 (1 - sin²(<em>x</em>)) + 2 sin(<em>x</em>) - 12 = 0

-2 sin²(<em>x</em>) + 2 sin(<em>x</em>) - 10 = 0

sin²(<em>x</em>) - sin(<em>x</em>) + 5 = 0

Using the quadratic formula, we get

sin(<em>x</em>) = (1 ± √(1 - 20)) / 2 = (1 ± √(-19)) / 2

but the square root contains a negative number, which means there is no real solution.

2 csc²(<em>x</em>) + cot²(<em>x</em>) - 3 = 0

2 (cot²(<em>x</em>) + 1) + cot²(<em>x</em>) - 3 = 0

3 cot²(<em>x</em>) - 1 = 0

cot²(<em>x</em>) = 1/3

tan²(<em>x</em>) = 3

tan(<em>x</em>) = ± √3

<em>x</em> = tan⁻¹(√3) + <em>nπ</em>  OR   <em>x</em> = tan⁻¹(-√3) + <em>nπ</em>

<em>x</em> = <em>π</em>/3 + <em>nπ</em>   OR   <em>x</em> = -<em>π</em>/3 + <em>nπ</em>

7 0
2 years ago
2x - 5 = 11<br> Pease Answer Quickly
valentina_108 [34]

Answer:

8

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
What’s the degree 2xy5
frutty [35]

Answer:

  6

Step-by-step explanation:

The degree of the term

  2xy^5

is the sum of the exponents of the variables, so is 1+5 = 6.

The degree of the term is 6.

6 0
3 years ago
I just need help with first 2! Show work please it’s due soon and round answers to the nearest tenth !!!
natima [27]

Answer:

1. To find the volume of a cylinder you'll need to use the formula V = pi(r)^2(h)

V = pi(4)^2(6)

V = 301.59

Rounded* = 301.6

2. A beach ball is a sphere, so we're going to use the formula 4/3pi(r)^3

4/3pi(18)^3

D =  24429.02

Rounded* = 24429.0

I cant read the last one completely, hope this helps.

5 0
2 years ago
Other questions:
  • Researchers are investigating whether people who exercise with a training partner have a greater increase, on average, in target
    10·1 answer
  • What is the value of q in the equation q−45=-5?
    13·1 answer
  • Help me!!!!!!!! plessssss.
    12·2 answers
  • C. ax + bx = 10
    8·2 answers
  • Ms. Franklin earns $ 15 an hour. For this year, she will be paid for 40 hours each week for 52 weeks. How much should Ms. Frankl
    11·1 answer
  • at a pizza place there are 4 diffrent sizes of pizza(small medium large and extra large. and 8 diffrent toppings (chicken, pepor
    9·1 answer
  • PLS PLS PLS ANSWER IT QUICKKKK
    5·1 answer
  • Help?<br> Q1 Given the following data: 18, 47, 51, 60, 72, 75, 80<br> Find Q1 =
    12·1 answer
  • If I have 2 sticks of butter and need 2. How much do I need???
    6·2 answers
  • Find each missing measure<br><br> PLS HURRY WILL GIVE BRANLIEST. DON'T RESPOND WITH LINKS
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!