Slope point form:
We need the slope "m" and a point (x₀,y₀)
y-y₀=m(x-x₀)
1)
we calculate the slope "m".
Given two points:
(x₁,y₁)
(x₂,y₂)
the slope "m" is:
m=(y₂-y₁) / (x₂-x₁)
In this case:
(4,10)
(6,11)
m=(11-10) / (6-4)=1/2
Now, we calculate the solpe point form.
(4,10)
m=1/2
y-y₀=m(x-x₀)
y-10=(1/2)(x-4)
we make the standard form
y-10=x/2 - 2
Lowest common multiple=2
2y-20=x-4
-x+2y=-4+20
-x+2y=16
Answer: -x+2y=16
To solve this problem you must apply the proccedure shown below:
1. Clear the radius from the formula for the circumference of a circle and substitute values, as following:

2. Substitute the radius calculated into the formula for calculate the surface area of the sphere:

The answer is: 
X+2 < 7
Subtract both sides by 2
x < 5
Any value where x was less than 5 would be correct.
Answer:
Answer:
Option 2nd is correct.
=0.
Step-by-step explanation:
Given the function:
Solve:
First calculate:
f[g(x)]
Substitute the function g(x)
Replace x with x-8 in the function f(x) we get;
The distributive property says that:
Using distributive property:
⇒
Put x = 6 we get;
Therefore, the value of is 0.
Step-by-step explanation: