1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Naddik [55]
3 years ago
5

Write the fraction 8/9 as a percent round to the nearest hundredth of a percent were necessary?

Mathematics
1 answer:
Flura [38]3 years ago
7 0

Answer:

A

Step-by-step explanation:

To turn a fraction into a percent, you divide the numerator by the denominator.

8 divided by 9 = .8 repeated

To turn it into a percent, you move the decimal to the right 2 spaces.

.8 turns into 88.8 repeated

Then you round to the nearest hundredth

88.8 repeated rounds to 88.89.

You might be interested in
Consider a circle centered at C(-2,-4). If the point P(1,-1) lies on the circle, then which of the following points also lies on
Aliun [14]

Answer:

Consider a circle centered at C(-2,-4). If the point P(1,-1) lies on the circle, then which of the following points also lies on the circle?

<h3>A. (-2, -√18)</h3>

B. (-2+√18, -4)

C. (√18, -4)

D. (-2, 4+√18)

Step-by-step explanation:

  • If the distance is greater than the radius, the point lies outside. If it's equal to the radius, the point lies on the circle. And if it's less than the radius, you guessed it right, the point will lie inside the circle.

hope it's help you

7 0
3 years ago
The volume of a cone varies jointly with the area of the base and the height. When the area of the base is 27 cm2 and the height
Tomtit [17]
Cone=cup:
V=124<span>cm^3.
h=12cm
V=Bh
P=r</span>^2π+rsπ:
B=r^2π
B=V/h=124/12=10,3cm^2
r^2=B/π
r=√(B/π)=1,81 cm
S=√(r^2+h^2)=√(12^2+1.81^2)=√(144+3,28)=12,13 cm
P=r^2π+rSπ=3,28*3,14+1,81*12,13*3,14=10,29+68,93=79,22 cm^2
3 0
3 years ago
Lenovo uses the​ zx-81 chip in some of its laptop computers. the prices for the chip during the last 12 months were as​ follows:
Stella [2.4K]
Given the table below of the prices for the Lenovo zx-81 chip during the last 12 months

\begin{tabular}&#10;{|c|c|c|c|}&#10;Month&Price per Chip&Month&Price per Chip\\[1ex]&#10;January&\$1.90&July&\$1.80\\&#10;February&\$1.61&August&\$1.83\\&#10;March&\$1.60&September&\$1.60\\&#10;April&\$1.85&October&\$1.57\\&#10;May&\$1.90&November&\$1.62\\&#10;June&\$1.95&December&\$1.75&#10;\end{tabular}

The forcast for a period F_{t+1} is given by the formular

F_{t+1}=\alpha A_t+(1-\alpha)F_t

where A_t is the actual value for the preceding period and F_t is the forcast for the preceding period.

Part 1A:
Given <span>α ​= 0.1 and the initial forecast for october of ​$1.83, the actual value for october is $1.57.

Thus, the forecast for period 11 is given by:

F_{11}=\alpha A_{10}+(1-\alpha)F_{10} \\  \\ =0.1(1.57)+(1-0.1)(1.83) \\  \\ =0.157+0.9(1.83)=0.157+1.647 \\  \\ =1.804

Therefore, the foreast for period 11 is $1.80


Part 1B:

</span>Given <span>α ​= 0.1 and the forecast for november of ​$1.80, the actual value for november is $1.62

Thus, the forecast for period 12 is given by:

F_{12}=\alpha&#10; A_{11}+(1-\alpha)F_{11} \\  \\ =0.1(1.62)+(1-0.1)(1.80) \\  \\ &#10;=0.162+0.9(1.80)=0.162+1.62 \\  \\ =1.782

Therefore, the foreast for period 12 is $1.78</span>



Part 2A:

Given <span>α ​= 0.3 and the initial forecast for october of ​$1.76, the actual value for October is $1.57.

Thus, the forecast for period 11 is given by:

F_{11}=\alpha&#10; A_{10}+(1-\alpha)F_{10} \\  \\ =0.3(1.57)+(1-0.3)(1.76) \\  \\ &#10;=0.471+0.7(1.76)=0.471+1.232 \\  \\ =1.703

Therefore, the foreast for period 11 is $1.70

</span>
<span><span>Part 2B:

</span>Given <span>α ​= 0.3 and the forecast for November of ​$1.70, the actual value for november is $1.62

Thus, the forecast for period 12 is given by:

F_{12}=\alpha&#10; A_{11}+(1-\alpha)F_{11} \\  \\ =0.3(1.62)+(1-0.3)(1.70) \\  \\ &#10;=0.486+0.7(1.70)=0.486+1.19 \\  \\ =1.676

Therefore, the foreast for period 12 is $1.68



</span></span>
<span>Part 3A:

Given <span>α ​= 0.5 and the initial forecast for october of ​$1.72, the actual value for October is $1.57.

Thus, the forecast for period 11 is given by:

F_{11}=\alpha&#10; A_{10}+(1-\alpha)F_{10} \\  \\ =0.5(1.57)+(1-0.5)(1.72) \\  \\ &#10;=0.785+0.5(1.72)=0.785+0.86 \\  \\ =1.645

Therefore, the forecast for period 11 is $1.65

</span>
<span><span>Part 3B:

</span>Given <span>α ​= 0.5 and the forecast for November of ​$1.65, the actual value for November is $1.62

Thus, the forecast for period 12 is given by:

F_{12}=\alpha&#10; A_{11}+(1-\alpha)F_{11} \\  \\ =0.5(1.62)+(1-0.5)(1.65) \\  \\ &#10;=0.81+0.5(1.65)=0.81+0.825 \\  \\ =1.635

Therefore, the forecast for period 12 is $1.64



Part 4:

The mean absolute deviation of a forecast is given by the summation of the absolute values of the actual values minus the forecasted values all divided by the number of items.

Thus, given that the actual values of october, november and december are: $1.57, $1.62, $1.75

using </span></span></span><span>α = 0.3, we obtained that the forcasted values of october, november and december are: $1.83, $1.80, $1.78

Thus, the mean absolute deviation is given by:

\frac{|1.57-1.83|+|1.62-1.80|+|1.75-1.78|}{3} = \frac{|-0.26|+|-0.18|+|-0.03|}{3}  \\  \\ = \frac{0.26+0.18+0.03}{3} = \frac{0.47}{3} \approx0.16

Therefore, the mean absolute deviation </span><span>using exponential smoothing where α ​= 0.1 of October, November and December is given by: 0.157



</span><span><span>Part 5:

The mean absolute deviation of a forecast is given by the summation of the absolute values of the actual values minus the forecasted values all divided by the number of items.

Thus, given that the actual values of october, november and december are: $1.57, $1.62, $1.75

using </span><span>α = 0.3, we obtained that the forcasted values of october, november and december are: $1.76, $1.70, $1.68

Thus, the mean absolute deviation is given by:

&#10; \frac{|1.57-1.76|+|1.62-1.70|+|1.75-1.68|}{3} = &#10;\frac{|-0.17|+|-0.08|+|-0.07|}{3}  \\  \\ = \frac{0.17+0.08+0.07}{3} = &#10;\frac{0.32}{3} \approx0.107

Therefore, the mean absolute deviation </span><span>using exponential smoothing where α ​= 0.3 of October, November and December is given by: 0.107



</span></span>
<span><span>Part 6:

The mean absolute deviation of a forecast is given by the summation of the absolute values of the actual values minus the forecasted values all divided by the number of items.

Thus, given that the actual values of october, november and december are: $1.57, $1.62, $1.75

using </span><span>α = 0.5, we obtained that the forcasted values of october, november and december are: $1.72, $1.65, $1.64

Thus, the mean absolute deviation is given by:

&#10; \frac{|1.57-1.72|+|1.62-1.65|+|1.75-1.64|}{3} = &#10;\frac{|-0.15|+|-0.03|+|0.11|}{3}  \\  \\ = \frac{0.15+0.03+0.11}{3} = &#10;\frac{29}{3} \approx0.097

Therefore, the mean absolute deviation </span><span>using exponential smoothing where α ​= 0.5 of October, November and December is given by: 0.097</span></span>
5 0
2 years ago
Which inequality represents this sentence? Seven plus five is greater than six plus two. A. 7 + 5 ≥ 6 + 2 B. 6 + 2 &gt; 7 + 5 C.
Ainat [17]
The answer would be D

Hope this helps!
5 0
3 years ago
Read 2 more answers
The decimal d is formed by writing in succession all the positive integers in increasing order after the decimal point; that is,
Maksim231197 [3]

Answer:

2

Step-by-step explanation:

We are given that a decimal number  d

d=0.12345678...

Where d is formed by writing in succession all the positive integers in increasing order after decimal point.

We have to find the 100th digit of d to the right of the decimal point.

Place of first digit 1 after decimal=Tenth

Place of second digit 2 after decimal=Hundredth

Place of third digit  3 after decimal=Thousandth

Therefore, 100th digit of d to the right of the decimal point=2

5 0
3 years ago
Other questions:
  • What is the value of n. n=3 x 45
    14·1 answer
  • What expression is equivalent to m-4/m+4 divided by (m+2)
    7·2 answers
  • Kirsten and Molly are on a 3-day bike ride. The entire route is 156 miles. On the first day, they biked 64 miles. On the second
    10·2 answers
  • Mrs.fan wrote 5 tenths minus 3 hundredths on the board. Michael said the answer is 2 tenths because 5 minus 3 is 2. Is he correc
    10·1 answer
  • Given a population that meets the conditions of a normal distribution, samples taken at random will also be normally distributed
    13·1 answer
  • Can someone help me from one two four please
    10·2 answers
  • The senior class at a very small high school has 25 students. Officers need to be elected for four positions: President, Vice-Pr
    5·1 answer
  • Use an equivalent calculation to work out 4.29 * 0.3 please i need it now
    9·1 answer
  • A car dealer paid a certain price for a car and marked it up byt 7/5 of the price he paid. Later he sold it for 24000. What is t
    8·1 answer
  • Simplify 8 – 4x – 5 + x.<br><br><br><br> 1<br><br><br> x – 2<br><br><br> 2 – 2x<br><br><br> 3 – 3x
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!