slope = (y2-y1)/(x2-x1)
the first slope is 0 (horizontal line)
second slope is undefined (vertical line)
12x+7x+8y+12^2+y+12=19x+9y+24^2
Answer:
19/20
Step-by-step explanation:
write all numerators above the common denominator 20
14+5/20
19/20
Answer:
a solution is 1/2 *tan⁻¹ (2*y) = - tan⁻¹ (x²) + π/4
Step-by-step explanation:
for the equation
(1 + x⁴) dy + x*(1 + 4y²) dx = 0
(1 + x⁴) dy = - x*(1 + 4y²) dx
[1/(1 + 4y²)] dy = [-x/(1 + x⁴)] dx
∫[1/(1 + 4y²)] dy = ∫[-x/(1 + x⁴)] dx
now to solve each integral
I₁= ∫[1/(1 + 4y²)] dy = 1/2 *tan⁻¹ (2*y) + C₁
I₂= ∫[-x/(1 + x⁴)] dx
for u= x² → du=x*dx
I₂= ∫[-x/(1 + x⁴)] dx = -∫[1/(1 + u² )] du = - tan⁻¹ (u) +C₂ = - tan⁻¹ (x²) +C₂
then
1/2 *tan⁻¹ (2*y) = - tan⁻¹ (x²) +C
for y(x=1) = 0
1/2 *tan⁻¹ (2*0) = - tan⁻¹ (1²) +C
since tan⁻¹ (1²) for π/4+ π*N and tan⁻¹ (0) for π*N , we will choose for simplicity N=0 . hen an explicit solution would be
1/2 * 0 = - π/4 + C
C= π/4
therefore
1/2 *tan⁻¹ (2*y) = - tan⁻¹ (x²) + π/4
Answer:
Great work!
Step-by-step explanation:
These kind of questions are calculated through Riemann Sum. You can evaluate any definite integral using the Riemann Sum. It should be in the following form:
f(x)dx on the interval [a, b], or

Now f(x) is simply y. Therefore in this example y = x^3 - 6x. We just need the sufficient amount of data to apply the Riemann Sum, including the interval [a, b] that bounds the area, and the the number of rectangles 'n' that we need to use.
Consider an easier approach to this question: (First attachment)
Graph: (Second Attachment)