1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Solnce55 [7]
2 years ago
10

A student says that the slope of the line for the equation y=20-15x is 20 and the y-intercept is 15. find and correct the error.

Mathematics
1 answer:
Sav [38]2 years ago
8 0
I dont really know but i think the intercept is 20
You might be interested in
What is the solution to the system of equations graphed below?
photoshop1234 [79]
A because that is where they cross
8 0
3 years ago
Read 2 more answers
Because of variability in the manufacturing process, the actual yielding point of a sample of mild steel subjected to increasing
Alex73 [517]

Answer:

modify tge production

Step-by-step explanation:

7 0
3 years ago
Marcella incarica Dora di aiutarla a suddividere 35 perle tra le sue tre figlie. Alla figlia maggiore vuole regalare la metà, al
Blizzard [7]

Answer:

La hija mayor recibirá 17.5 perlas, la hija del medio recibirá 11.66 perlas, y la hija menor recibirá 3.88 perlas.

Step-by-step explanation:

Dado que Marcella le pide a Dora que la ayude a dividir 35 perlas entre sus tres hijas, y quiere darle la mitad a la hija mayor, la tercera parte a la del medio y la novena a la menor y, además, Marcella quiere darle una perla a Dora como recompensa, para determinar cuántas perlas recibirá cada hija se debe realizar el siguiente cálculo:

35 / 2 = Mayor = 17.5 perlas

35 / 3 = Medio = 11.66 perlas

35 / 9 = Menor = 3.88 perlas

Así, la hija mayor recibirá 17.5 perlas, la hija del medio recibirá 11.66 perlas, y la hija menor recibirá 3.88 perlas.

5 0
2 years ago
Gradient from 2 - 1/2y = 0​
kirill115 [55]

Given :

  1. 2 - 1/2y = 0

To find :-

  • The gradient form .

Solution :-

<u>The </u><u>gradient</u><u> form</u><u>/</u><u> </u><u>slope</u><u> intercept</u><u> form</u><u> </u>

  • y = mx + c ,

<u>On </u><u>converting</u><u> </u><u>,</u>

  • 2 - 1/2y = 0
  • 1/2y = 2
  • y = 2*2
  • y = 4
  • y = 0x + 4
4 0
2 years ago
Evaluate the line integral by the two following methods. xy dx + x2 dy C is counterclockwise around the rectangle with vertices
Airida [17]

Answer:

25/2

Step-by-step explanation:

Recall that for a parametrized differentiable curve C = (x(t), y(t)) with the parameter t varying on some interval [a, b]

\large \displaystyle\int_{C}[P(x,y)dx+Q(x,y)dy]=\displaystyle\int_{a}^{b}[P(x(t),y(t))x'(t)+Q(x(t),y(t))y'(t)]dt

Where P, Q are scalar functions

We want to compute

\large \displaystyle\int_{C}P(x,y)dx+Q(x,y)dy=\displaystyle\int_{C}xydx+x^2dy

Where C is the rectangle with vertices (0, 0), (5, 0), (5, 1), (0, 1) going counterclockwise.

a) Directly

Let us break down C into 4 paths \large C_1,C_2,C_3,C_4 which represents the sides of the rectangle.

\large C_1 is the line segment from (0,0) to (5,0)

\large C_2 is the line segment from (5,0) to (5,1)

\large C_3 is the line segment from (5,1) to (0,1)

\large C_4 is the line segment from (0,1) to (0,0)

Then

\large \displaystyle\int_{C}=\displaystyle\int_{C_1}+\displaystyle\int_{C_2}+\displaystyle\int_{C_3}+\displaystyle\int_{C_4}

Given 2 points P, Q we can always parametrize the line segment from P to Q with

r(t) = tQ + (1-t)P for 0≤ t≤ 1

Let us compute the first integral. We parametrize \large C_1 as

r(t) = t(5,0)+(1-t)(0,0) = (5t, 0) for 0≤ t≤ 1 and

r'(t) = (5,0) so

\large \displaystyle\int_{C_1}xydx+x^2dy=0

 Now the second integral. We parametrize \large C_2 as

r(t) = t(5,1)+(1-t)(5,0) = (5 , t) for 0≤ t≤ 1 and

r'(t) = (0,1) so

\large \displaystyle\int_{C_2}xydx+x^2dy=\displaystyle\int_{0}^{1}25dt=25

The third integral. We parametrize \large C_3 as

r(t) = t(0,1)+(1-t)(5,1) = (5-5t, 1) for 0≤ t≤ 1 and

r'(t) = (-5,0) so

\large \displaystyle\int_{C_3}xydx+x^2dy=\displaystyle\int_{0}^{1}(5-5t)(-5)dt=-25\displaystyle\int_{0}^{1}dt+25\displaystyle\int_{0}^{1}tdt=\\\\=-25+25/2=-25/2

The fourth integral. We parametrize \large C_4 as

r(t) = t(0,0)+(1-t)(0,1) = (0, 1-t) for 0≤ t≤ 1 and

r'(t) = (0,-1) so

\large \displaystyle\int_{C_4}xydx+x^2dy=0

So

\large \displaystyle\int_{C}xydx+x^2dy=25-25/2=25/2

Now, let us compute the value using Green's theorem.

According with this theorem

\large \displaystyle\int_{C}Pdx+Qdy=\displaystyle\iint_{A}(\displaystyle\frac{\partial Q}{\partial x}-\displaystyle\frac{\partial P}{\partial y})dydx

where A is the interior of the rectangle.

so A={(x,y) |  0≤ x≤ 5,  0≤ y≤ 1}

We have

\large \displaystyle\frac{\partial Q}{\partial x}=2x\\\\\displaystyle\frac{\partial P}{\partial y}=x

so

\large \displaystyle\iint_{A}(\displaystyle\frac{\partial Q}{\partial x}-\displaystyle\frac{\partial P}{\partial y})dydx=\displaystyle\int_{0}^{5}\displaystyle\int_{0}^{1}xdydx=\displaystyle\int_{0}^{5}xdx\displaystyle\int_{0}^{1}dy=25/2

3 0
3 years ago
Other questions:
  • What is the scientific notation for 568 billion?
    9·1 answer
  • Simplify<br><br> √12m • √15m<br><br> = [1] m √[2]
    13·1 answer
  • PLEASE LOOK AT THIS multiple choice, thanks.
    10·1 answer
  • A line has a slope of -2 and passes through the point (1,-2). what is an equation of this line ?
    14·2 answers
  • Instruction
    5·1 answer
  • a coyote can run up to 43 mph while a rabbit can run up to 35 mph. Write two equivalent expressions and then find how many more
    10·1 answer
  • Can someone explain this
    9·1 answer
  • In the rhombus ABCD, ĐDAE = 30°. Which is ĐABC?
    11·2 answers
  • 3 + 11 × 8^2 = <br> PLEASE HELP ASAP
    11·2 answers
  • Which expression is equivalent to 8xy + xy + 19xy+X?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!