Step-by-step explanation:
The solution to this problem is very much similar to your previous ones, already answered by Sqdancefan.
Given:
mean, mu = 3550 lbs (hope I read the first five correctly, and it's not a six)
standard deviation, sigma = 870 lbs
weights are normally distributed, and assume large samples.
Probability to be estimated between W1=2800 and W2=4500 lbs.
Solution:
We calculate Z-scores for each of the limits in order to estimate probabilities from tables.
For W1 (lower limit),
Z1=(W1-mu)/sigma = (2800 - 3550)/870 = -.862069
From tables, P(Z<Z1) = 0.194325
For W2 (upper limit):
Z2=(W2-mu)/sigma = (4500-3550)/879 = 1.091954
From tables, P(Z<Z2) = 0.862573
Therefore probability that weight is between W1 and W2 is
P( W1 < W < W2 )
= P(Z1 < Z < Z2)
= P(Z<Z2) - P(Z<Z1)
= 0.862573 - 0.194325
= 0.668248
= 0.67 (to the hundredth)
Answer:
the answer would be 13
Step-by-step explanation:
26/2=13
In order to find which is the answer, we will go step-by-step. Numbers that are not followed by I are drawn on the Real Axis and the other ones are drawn on the Imaginary Axis. You go first on the Real Axis and then on the Imaginary Axis and intersect those 2 points. If a number does not have an imaginary or real part you can assume that is equal to 0. As you can notice the number that is not in the shaded area is <span>2 − I</span>