D.3:50
Count back 25 minutes from 4:15 and you’ll get 3:50. The numbers on the clock are 5 minutes apart. It should be easy to solve just by using a standard clock
Using Gauss's method
Total number of terms = [15-(-129)]/4+1=36+1=37
Add
S=15+11+7+....-125-129
S=-129-125-...+7+11+15
--------------------------------
2S=-114-114-114...(37 times)
=>
sum=S=(1/2)*(-114)*37=-2109
Using AP, T(n)=15+11+7+....-129
T(n)=19-4n => T(1)=15, T(37)=-129
S(n)=(1/2)(37)(T(1)+T(37)=(1/2)37(15-129)=2109
Answer:
d+2qd+=31
Step-by-step explanation:
Bad Senses ear cows
Answer: use photomath
Step-by-step explanation:
all you have to do is find pairs of factor for both 15 and 56
e.g. 1,15 3,5
1.56 2, 28 4, 14
so three possibilities could be
1/1 x 15/56
3/4 x 5/14
1/2 x 15/28